

BREKKE 🔛 STRAND

Slides Show mode recommended (bottom right) Audio available

Magne Skålevik Brekke & Strand, Oslo <u>www.akutek.info</u>

Link to online paper

CAN SPACIOUSNESS BE MEASURED DURING A CONCERT?

IOA Auditorium Acoustics, Saturday 31st October 2015

Pursuing the Spaciousness-Meter

Can Source Broadening (ASW) and Listener Envelopment (LEV) be measured directly from a music performance in a concert hall?

Approach: To test Binaural metrics that are sensitive to room acoustical properties that are known to influence on perception of Spaciousness

Pursuing the Spaciousness-Meter

Listeners Perceptual Aspect	Measure from IR	Measure from Music?
Listener Envelopment LEV	LLG or 1-IACCL and G _{late}	Easy?
Source Broadening ASW	LF or 1-IACCE	Difficult??

Concept: If we can hear it, we can measure it Correlation and Lateral Energy can be measured as functions of time, with integration time T, e.g. LF(T,t) and IACC(T,t)

Measurement equipment

Maybe not

Measurement equipment

Live data aquired so far

- NY, Avery Fisher Hall
- Berlin, Philharmonie
- Helsinki, Music Centre
- Boston, Symphony Hall
- Chicago, Orchestra Hall
- Norway:
 - Oslo, Kristiansand, Stavanger, Bergen

Including some recordings with same music in different halls

Well-worn devices

Long time utilized in Broadcasting, sound recording and -reproduction

- Goniometer

It's basically an x-y scope turned 45 degrees

Correlation (r) meter

r = +1	means	L = R
r = 0	means	L≠ R
r = -1	means	L = -R

«no stereo» «no mono, pure stereo» «L and R in oposite phase» «no lateral energy» «pure lateral energy» «standing wave at 1kHz?»

Well-worn devices

«vertical» patterns indicate high correlation (r=0.5-1.0)

«round» patterns indicate low correlation (r=0.0-0.5)

Spaciousness - Lateral Energy - Correlation

Spaciousness	Lateral Energy	L-R correlation
Little	Small fraction	High (0.5-1.0)
Much	Big fraction	Low (0.0-0.5)

Correlation and Lateral Energy Fraction is basically Lateral Energy normalized to Total Energy Lateral Energy is the energy of the difference signal L(t)-R(t)

Prokofiev in NY

Goniometer, integrated 10s Binaural Lateral Fraction =0.39 R² = 0.40 100ms frame at 3.7s, Binaural Lateral Fraction =0.18 $R^2 = 0.69$ 100ms frame at 4.8s, Binaural Lateral Fraction =0.84 $R^2 = 0.03$

Prokofiev Dance of the Knights

Stravinsky Rite of Spring

Solo play in Paris Philharmonie

000

Stalls Row K seat 03 Binaural Lateral Fraction = 0.70 ± 0.33

From IR, stage to K-03: 1-IACCe = 0.51 ± 0.15 1-IACCL = 0.88 ± 0.02

Testing sensitivity to transients

Echard plays in Philharmonie: Binaural Lateral Fractions stacked octave bands

000

Testing sensitivity to transients

🗧 10s of 3 balloon bursts in Philharmonie: Binaural Lateral Fractions stacked octave bands

Testing sensitivity to transients

000

10s of 'Fireworks' in reverberant room: Binaural Lateral Fractions stacked octave bands

Doing the math

Given a sequence of n samples (1,2,..i,...,n) of a binaural signal pair from period T, sample rate n/T, and the i-th sample, pair is $\{L_i, R_i\}$, then the (normalized) Inter-Aural Cross-Correlation over a period T is IACC = N/D, where $N = \sum L_i \cdot R_i$ $D = sqrt(\sum L_i^2 \cdot \sum R_i^2)$

Note that D, the normalizer, is the product of the RMS of the L-signal and the RMS of the R-signal, over the period T

1-IACC relates to LF

The nominator $\sum L_i \cdot R_i$ can be obtained in different ways, e.g $L_i \cdot R_i = \frac{1}{4} \cdot [(L_i + R_i)^2 - (L_i - R_i)^2]$ or $L_i \cdot R_i = \frac{1}{2} \cdot [L_i^2 + R_i^2 - (L_i - R_i)^2]$

If L and R are picked up by two closely spaced omni-mics, then $(L_i - R_i)^2$ would be the figure-8-mic energy the Nominator of LF, and $\frac{1}{2} \cdot [L_i^2 + R_i^2]$ would be the omni-mic energy of the Denominator of LF

1-IACC relates to LF

For closely spaced pick-up of L and R,

 $L_i^2 = R_i^2$ and $sqrt(\sum L_i^2 \cdot \sum R_i^2) = \sum L_i^2$ thus $\sum L_i \cdot R_i = \sum \frac{1}{2} \cdot [L_i^2 + R_i^2 - (L_i - R_i)^2] = \sum L_i^2 - \frac{1}{2} \cdot \sum (L_i - R_i)^2$ dividing by $\sum L_i^2$, rearranging and arriving at $\sum L_i R_i / \sum L_i^2 = 1 - \frac{1}{2} \cdot \sum (L_i - R_i)^2 / \sum L_i^2$ Recognizing the correlation r on the left side $1 - r = \frac{1}{2} \cdot \sum (L_i - R_i)^2 / \sum L_i^2$

The Sagittal Plane

Non-Lateral Energy travels and arrives in or near the Sagittal Plane

Sagittal Energy = Non-Lateral Energy

Lateral Energy vs Non-Lateral Energy

Lateral Energy vs Non-Lateral Energy

NOTE 1: Correlation and Lateral Energy Fraction in Mid-Frequencies is relevant to Spaciousness NOTE 2: Low Frequency sounds «surround» the listener and would contribute to Spaciousness regardless of direction NOTE 3: Above ca 1.5kHz our hearing change startegy to use ITD envelope ques and ILD (or IID) ques

Relevant spaciousness measures

1-IACC and LF ≈ Lateral Energy normalized to Total Energy Measures defined for the purpose of the investigation:

Quantity	Notation [unit]	Formula
Binaural Total Energy Level	BTL (T,t) [dB]	10 lg [L² + R²]
Binaural Lateral Energy Level	BLL (T,t) [dB]	10 lg [(L – R)²]
Binaural Sagittal Energy Level*	BSL (T,t) [dB]	10 lg [L ² + R ² – (L – R) ²]
Binaural Lateral Energy Fraction	BLF (T,t) [1]	$(L - R)^2 / (L^2 + R^2)$

*Sagittal Energy = Total Energy – Lateral Energy

BRIR: IACC and buildup of Lateral and Non-Lateral Energies

IACCE = 0.36 IACCL = 0.11

BRIR Buildup of Lateral and Non-Lateral energies

Further work

- Determine optimum T: 33ms, 50ms, 80ms, 100ms?
- Searching for ques of Source Broadening
- Data collection
- More testing of Spaciousness-relevant measures
- Goal: To arrive at a technique that measures significant differences between rooms that we know have significantly different Spaciousness parameter values according to ISO-3382-1

BREKKE 🔛 STRAND

Thank you

More info?

The www center for search, research and open sources in acoustics

www.akutek.info

magne.skalevik@brekkestrand.no