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Introduction and Motivation
• Diffraction is necessary to achieve perceptual 

realism and physical accuracy in acoustic 
simulations of complex environments

Occluded line of sight (e.g. musicians in opera pits)
Exposed edges (e.g. reflector arrays or proscenia)

• Diffraction calculations add significant 
computational load

Each diffraction IR can be hard/slow to compute
Diffracted paths drastically increase the total number 
of propagation paths from a source to receiver

• Computational load makes interactive 
simulations difficult

• Methods are needed to reduce diffraction-
related computations Central Michigan University Recital Hall 

http://www.audiosystemsgroup.com/cmu.htm

http://www.lancetteer.com/images/Interior_Cut-away.jpg
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Introduction and Motivation
• Diffraction calculations add significant 

computational load
Each diffraction IR can be hard/slow to compute
Diffracted paths drastically increase the total number 
of propagation paths from source to receiver

• Diffraction is necessary to achieve perceptual 
realism and physical accuracy in simulations     
of complex environments

Occluded line of sight (e.g. musicians in opera pits)
Exposed edges (e.g. reflector arrays or proscenia)

• Computational load makes interactive 
simulations difficult

• Methods are needed to reduce diffraction-
related computations

S

R



19
th

In
te

rn
at

io
na

l C
on

gr
es

s 
on

 A
co

us
tic

s,
 2

-7
 S

ep
te

m
be

r 2
00

7,
 M

ad
rid

, S
pa

in
, P

ap
er

 R
BA

-1
1-

00
3

Introduction and Motivation
• Diffraction calculations add significant 

computational load
Each diffraction IR can be hard/slow to compute
Diffracted paths drastically increase the total number 
of propagation paths from source to receiver

• Computational load makes interactive 
simulations difficult

• We describe a method to reduce diffraction-
related computations by culling insignificant 
diffracted paths before their IRs are calculated

• Diffraction is necessary to achieve perceptual 
realism and physical accuracy in simulations     
of complex environments
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Terminology: Zone Boundary
• Zone I

Direct sound
Specular reflection
Diffraction

• Zone II
Direct sound
Diffraction

• Zone III (Shadow Zone)
Diffraction

• Zone boundary
Geometrical acoustics 
components are 
discontinuous
Reflection boundary: 
Boundary between 
Zones I and II 
Shadow boundary: 
Boundary between 
Zones II and III
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Previous Culling Work
• Tsingos et al. (SIGGRAPH ‘01)

UTD diffraction within a beam-tracing framework
Optionally cull all diffracted paths for which the receiver 
is not in the shadow zone (i.e. compute diffraction only 
in the shadow zone)

• Antonacci et al. (EUSIPCO ‘04)
UTD diffraction within a beam-tracing framework
Similar shadow-zone culling approach
No diffraction calculations for wedges with exterior 
angle < 180˚

• Plenty of other related work on diffraction in room 
acoustics
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Wedge Geometry
• Wedge

θw = exterior wedge angle
ν = π/θw is the wedge 
index

• Source and Receiver: 
Edge-Aligned Cylindrical 
Coordinates (r,θ, z)

r = radial distance from 
the edge
θ = angle measured from 
a face
z = distance along the 
edge

• Other
m = distance from source 
to edge point
l = distance from 
receiver to edge point
A = apex point for S/R
A’ = apex point for S’/R’

A

A’
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BTM Diffraction Formulation
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• Various Amplitude Factors
S/R Distance
Wedge angle
Edge length
Angular distance to 
zone boundary
Apex included
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BTM Diffraction Formulation
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• Various Amplitude Factors
S/R Distance
Wedge angle
Edge length
Angular distance to 
zone boundary
Apex included
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BTM Diffraction Formulation

• At the zone boundaries cos(νφi) = 1 
for one or two of the four terms 

• For the path from S to R through the 
apex point cosh(νη) = 1 

• Combination of the two results in a 
singularity for the IR onset:

( )
( )[ ] ( ) 11

0
coscosh

sin
−

→
− i

i

z νϕνη
νϕ
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UTD Diffraction

• Zone-boundary singularity also occurs in 
other diffraction formulations, e.g. UTD: 

D is the diffraction coefficient 
C is a frequency-dependent constant
F() is a ‘transition function’

• No apex-point term since UTD assumes an 
infinite edge (i.e. apex is always included)

( )∑
= ⎭
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⎩
⎨
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RDiffraction IR Peak vs. θ

Reflection 
Boundary

Shadow  
Boundary
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Culling Approach
• Assume perceptually significant diffraction 

IRs are those with highest amplitude 
and/or energy

• Find them with limited computation
Use proximity to the nearest zone boundary 
AND apex-point status as first guess
Further refine with moving onset threshold, 
culling IRs with small peaks (relative to the 
biggest computed so far)

• Fully compute significant diffraction IRs, 
ignore all others
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• Proximity to the nearest zone boundary 
min{min(|νφi|), min(|2π - νφi|)}

• The apex point is included in the edge
z1 · z2 < 0 (z = 0 at the apex point)

• Onset magnitude based on the onset 
sample of the discrete-time diffraction IR

, n = 0( )

Culling Approach

∑ ∫
=

−=
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1,
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Test Scenario
• Simple Concert-Hall 

Model
19 Faces
36 Diffracting Edges

• 2 Source Positions
• 5 Receiver Positions
• 4th-order IRs

computed with and 
w/o culling using the 
Edge Diffraction 
Toolbox for Matlab

• Evaluation of 
processing-time 
reduction and error 
due to cullingModel from: F. P. Mechel, “Improved mirror source method in 

room acoustics,” J. Sound. Vib., vol. 256, pp. 873–940, 2002.
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Diffraction IR Distribution

Data for S1/R3 Impulse Response
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Culling Parameters

• Angular Threshold
Receiver within 30° of the nearest zone 
boundary and apex included

• Magnitude Threshold
Diffraction onset within 20, 30, or 40 dB of the 
largest computed thus far
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Time-Domain Comparison
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Time-Domain Comparison
S1 R2: Total IR

S1 R2: Boundary Cull at 30˚

S1 R2: GA Only
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Timing Data

Diffraction-processing time with culling relative 
to diffraction-processing time without culling
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Timing Data: Mean Values
Num. Diff. IRs Diff. Proc. Time

None

30˚ Only

30˚ and -40 dB

30˚ and -30 dB

30˚ and -20 dB

10720

1002

769

444

187

100%

5.4%

4.5%

3.1%

1.7%

Culling
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Maximum Spectral Error: Full IR
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Maximum Spectral Error: First 80 ms
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Conclusions

• Significant diffraction components can be 
identified by considering S/R geometry 
with respect to

Proximity to zone boundaries
The least time path through the edge (i.e. the 
inclusion of the apex point)

• Culling insignificant components can 
reduce computation time with limited 
spectral error in the overall response
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Future Work

• Further tests with more complex models
• Listening tests for perceptual evaluation of 

culling
• Culling with a priority queue rather than a 

threshold, with priority based on:
• Zone-boundary proximity and apex-point status
• Arrival time (early = high priority, late = low priority)
• Arrival direction (front = high priority, rear = low 

priority)

• Analysis for interactive scenarios
Receiver moving across a zone boundary
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The End

Questions?

Thank you for your attention.
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Related Work
• Edge diffraction in room acoustics simulations

Ouis, “Scattering by a barrier in a room”
Torres et al., “Computation of edge diffraction for more accurate room 
acoustics auralization”
Pulkki and Lokki, “Visualization of edge diffraction”
Løvstad and Svensson, “Diffracted sound field from an orchestra pit”

• Speed and efficiency of diffraction calculations
Tsingos and Gascuel, “Fast rendering of sound occlusion and diffraction 
effects for virtual acoustic environments”
Lokki et al., “An efficient auralization of edge diffraction”
deRycker, “Theoretical and numerical study of sound diffraction: 
Application to room acoustics auralization”
Calamia and Svensson, “Fast time-domain edge-diffraction calculations 
for interactive acoustic simulations”
Kapralos et al., “Acoustical diffraction modeling for interactive virtual 
environments”

• Acoustic modeling with diffraction culling
Tsingos et al., “Modeling acoustics in virtual environments using the 
Uniform Theory of Diffraction”
Antonacci et al., “Fast modelling of acoustic reflections and diffraction in 
complex environments using visibility diagrams”
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Related Work
• Edge diffraction in room acoustics simulations

Ouis, Applied Acoustics 1999
Torres et al., JASA 2001
Pulkki and Lokki, ARLO 2003
Løvstad and Svensson, Acoust. Sci. Tech 2005

• Speed and efficiency of diffraction calculations
Tsingos and Gascuel, Proc. AES 1998
Lokki et al., Proc. AES 2002
deRycker, École Polytechnique 2002
Calamia and Svensson, EURASIP JASP 2007
Kapralos et al., GRAPP 2007

• Acoustic modeling with diffraction culling
Tsingos et al., Proc. SIGGRAPH 2001
Antonacci et al., Proc. EUSIPCO 2004
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