BREKKE 🔛 STRAND

Magne Skålevik Brekke & Strand, Oslo <u>www.akutek.info</u>

How much diffusers is required?

SOFTENING THE HARD CASE

FA 2014, Krakow, September 8th 2014

Outline

- Hard Case problem:
 - Ceiling absorber creates 2-D reverberant field
 - How much diffusers are required on walls, to soften the Hard Case, i.e. to acheive RT as predicted by Sabine's Formula
- Scale model experiments
- Full scale experiments

Recall FA2011: The Hard Case

Curvature (Double slope)

Time (s)

Scale Model experiments (J.Vennerød, NTNU)

w/wo ceiling absorber

Calculated Sabine absorption

Unexpected low-frq behaviour

Introducing wall diffusers

D=22mm thick rectangular plates (red curve) covering 22% of the wall surfaces make a strong difference from 800Hz upwards => k*D=0.33 Full ceiling potential (α =1.0) is represented by the dashed blue curve

Scale model Hard Case

 Hard rectangles mounted to empty walls make the same impact on T₃o as if they were perfect absorbers

Full scale Hard Case experiment

Windows tilted inwards $\Delta x=14$ cm at the top edge => 4.8 degrees from vertical plane

Results from tilting windows

Blue curve: No windows tilted Red curve: 5 of 9 windows tilted Green curve: all 9 windows tilted

Apparent differences in absorption area in m ² Sa	2kHz	4kHz	8kHz	dS (m²)
Windows closed (ref.)	0	0	0	0
5 of 9 windows tilted	5	10	7	6.5
All 9 windows tilted	10	16	13	13.5

dS = total area of tilted windows

Curvature (Double slope)

Full scale Hard Case

- Frequency dependent behaviour like in scale model
 - -> not a room-wavelength effect
 - suspicion turns to aborber
- Tilting of the windows make greater difference in apparent absorption area (m²Sa) in 4kHz than if the windows instead of being tilted were covered with a perfect absorber
- Suggested explanation: Tilted surface redirects horisontal rays, producing vertical components that are absorbed by the ceiling

Avoiding the Hard Case

- Safe Case: Planning for Sabinian conditions:
 - Perfect distribution of absorbtion area
 - A/6 on each of 6 surfaces: walls, ceiling and floor
- More practical
 - A/3 in each direction x, y, z: A/3 in ceiling, and
 - total A/3 on short walls, and total A/3 on long walls

How many hard elements are required to soften the Hard Case?

- Assuming absorption area A in ceiling, and hard, scattering elements on walls area total
- Necessary total element area is
 - $S \ge A/3$ on short walls
 - $S \ge A/3$ on long walls

Further work: Explain frequency dependency

Conclusions

- Hard Case can be softened with hard elements, frequency range $k\Delta x > 0.33$
- Added diffusers act like absorbers
- Suggested «safe» planning:
 - A in ceiling, and hard, scattering elements surface area total S=A/3 on short walls and total S=A/3 on long walls
- Further work: Investigate unexplained lowfreqency absorption in Hard Case

BREKKE 🔛 STRAND

More info?

The www center for search, research and open sources in acoustics

www.akutek.info

magne.skalevik@brekkestrand.no