

Magne Skålevik Brekke & Strand, Oslo, Norway www.akutek.info

Small room acoustics

- Cuboid room, dimensions given, take it or leave it
- Hard walls
- Hard floor
- Soft material elements not wanted
- Ceiling the only possible absorbing surface
- Sources with harmonic spectra
 - Speech, music, media playback, etc

Disturbing speech response

Pitch fluctuation in various positions reveals uneven vowel response

Flutter-echo

Flutter echo is a temporal feature of a complex mode, thus accompanied by tones

Discriminating pitch response

Some notes (tones) are emphasised, others are not Fast passages blurred out due to long tonal decays

Intonation can be HARD, since room-modes often are "out-of-key"

Hard Case fundamental modes

Hard Case harmonic modes

ANY cuboid mode = the fundamental of a harmonic spectrum -> Pitch

Periodic response, period T

f(Hz)

Periodic response measured

Cuboid acoustic highlights

- Any cubiod mode F_{i,j,k} defines a periodic response with period T=1/ F_{i,j,k}
- Complex mode = the harmonic series of modes with fundamental frequency F_{i,i,k} = 1/T
- Periodic room response can be perceived as Pitch response
- Supported pitch (musical notes) are defined by the harmonic series 1/T, 2/T, ...
- Flutter-echo of period T is the temporal percetion of a harmonic series with spectral spacing 1/T and at least two audible components
- Audible effect above the Schroeder limit, too

The Hard Case is very common

- Many rooms are used for speech
- Music may be less common, but more sensitive
- Minimalistic interior styles
- Carpets often unwanted or forbidden
- Acoustic wall-treatment conflict with furniture, fixtures, aesthetics or economy
- Cubiod geometry is encouraged by gravity and the tempting simplicity of right angles

Hard Case Tonal Response

- Cuboids' respond to the PITCH of vowels and musical tones
- Human perception sensitive to pitch, pitch draws attention
- Problem easy to perceive, but...
- Hard to measure with blind methods
- Hard to predict (slanted walls makes prediction harder)
- Hard to avoid
- Hard to accept
- Hard to handle
 - Smallest dimension of hard treatment > $\lambda/4$
 - It takes >50cm thickness to control response down to 170Hz (E3)
 - Horizontal modes ignores ceiling absorbers

Measurement case

- Parallel walls 6.5m apart (26Hz)
- One wall 28cm deep zig-zag shape (=λ/4 at 300Hz)
- Schroeder region above 125Hz
- Disturbing voice response heard in the 150-300Hz range
- ...together with a flutter-echo
- Hard to detect with blind measurement

Measured voice response

Decays in 5.3Hz narrowband vs 1/3 oct broadband, RT(s)

Narrowband decay deviates normal-distributed from broadband decay: $\sigma = 26\%$

Softening the Hard Case

Element density depends on wall-to-wall distance and RT requirement.

Conclusions

- Hard case cuboids respond strongly and unevenly to speech and music, due to coinciding harmonic spectra
- Walls should be treated with sound scattering elements
- Obtainable RT's depend on longest wall-to-wall distance D, and the scattering coefficient
- RT's down to D/17 can be obtained
- Treatment thickness > λ/4 in problem range, e.g.
 50cm at 170Hz
- Audibility is more than loudness; Tonal RT is important

Further work

- Narrowband RT distribution to be investigated further
- Lower limit of problem range remains to determine
- Methods for predicting, measuring and assessing Tonal Response in rooms
 - Criteria for music and speech
- More insight in horizontal 2D-acoustics

BREKKE 🔛 STRAND

Thank you

More info?

The www center for search, research and open sources in acoustics

www.akutek.info

magne.skalevik@brekkestrand.no

A semi-hard case

- 66m² floor, 3.8m high, ceiling α=0.7
- Schroeder region above 125Hz
- 3 walls with average alfa=0.25
- Hard Zig-zag wall deviates from by 28cm (=λ/4 at 300Hz)
- wall to wall distance 6.5m (mode=26Hz)
- Prolonged narrowband RT's are heard in the 150-300Hz range
- ...together with a flutter-echo

