Orchestra Canopy Arrays

- some significant features

Magne Skålevik,

www.akutek.info

Brekke Strand Akustikk,

Oslo, Norway

msk@bs-akustikk.no
What is an orchestra canopy?

- Horizontal, sound reflecting device
- Suspended, above orchestra, examples:

Single element
\[\mu = 100\% \text{ density} \]

Element array, \[\mu = 50\% \text{ density} \]
Canopy justification?

• Measured and predicted effect sometimes weak
 – Even if musicians respond positively

• High rated concert halls without a canopy
 – Musikvereinsaal in Vienna
 – Concertgebouw in Amsterdam
 – Boston Symphony Hall
Canopies can provide...

- Support: Musician hearing oneself
- Mutual hearing among musicians at stage
- Several communication channels for mutual hearing
- Preventing echo from high ceiling
- Early sound (<50ms delayed) to the audience
Support – hearing oneself
Support — fill-in-effect

32ms

w canopy
ST1=-13.7dB

no canopy
ST1=-15.2dB
Mutual hearing
Mutual hearing

- 5 measurements, 10m source-receiver distance
Mutual hearing

- Fill-in-effect, 10m source-receiver distance
Mutual hearing

- Initial time delay gap ITDG, at 10m distance

20dB

w canopy

15ms

20dB

no canopy

48ms
Early reflection to front seats

Canopies motivated by reducing ITDG in stalls since Tanglewood Shed (1950es)

• Danger! Risk of suppressing lateral sound and wideness
Early energy control by stage volume

\[ST1 \approx 18 - 10 \log(V) \text{ due to restricted stage volume } V \]

\[ST1 \approx -20 \log(H) \text{ due to specular reflection alone} \]

-23dB

V = 1000m³

-12dB

H = 7m
Unobstructed transmission

Transmission through orchestra is often obstructed

The canopy path is always available
Synchronism

Image orchestra

Received:
- In sync
- Equal levels
Wall reflections

Image orchestra

Received:
• Out of sync
• Level differences dB/m, due to obstructed sound path
Wall + Balcony soffit

Image orchestra

Received:
• Out of sync
• Level differences dB/m, due to incomplete coverage
Tilted reflector

Image orchestra

Received:
• Out of sync
• Different levels due to inverse square law
Canopy – image orchestra in sync

Image orchestra

Received:
• In sync
• Equal levels
Canopy caveats and pitfalls

• To low / to dense
 – stage acoustically separated from hall
 – to much sound from above, on stage
 – suppressing lateral sound and wideness (ASW), in stalls
 – obstruction of sightlines from galleries, lighting and stage machinery, and air-circulation

• To high
 – to late reflection
 – to weak effect

• To open
 – to weak effect
Design issues

- Sound level and balance control
- Diffusivity
- Reflection frequency range
- Flexibility – variable or fixed in height and angle, individually or grouped
- Coordination with architecture, stage equipment, lighting, ventilation, structural engineering, etc.
Design parameters → Design issues

• Overall size of the canopy → Level & Balance
• Surface density (typical 50%) → Level & Balance
• Element size → Frequency Range (important 500-2k)
• Height → Delay & Synchronicity
• Element shape and scattering → Diffusivity and Frequency Range
Conclusions

• Canopies - not a “must have”
 – If ceiling and walls provide adequate over-stage volume and height

• Canopies can provide
 – Support & Early Energy control
 – Unobstructed Sound Link (always “visible”)
 – Early Energy to audience (careful – not too much)
 – Synchronized orchestra foldback (good or bad?)
 – Fill-in-effect
 – Diffusivity
 – Evenness, rather than strong effect
Further work and development

• Measurement and predictions of stage acoustics, must take into account:
 – Source directivity
 – Obstruction of sound paths
 – Musicians subjective sound level – self and others
 – Masking effects (own instrument, other instruments)

• Investigate significance of
 – Diffusivity and Fill-in-effect
 – Synchronism
 – Frequency range
 – Evenness vs strength (like with reading lights)
Diffusivity

Single channel transmission via specular reflection
Diffusivity

Multi-channel transmission via diffuse reflections

- less affected by directionality and natural obstacles
Diffusivity

Multi-channel transmission via diffuse reflections

- less affected by directionality and natural obstacles
Low frequency response

- Elements small compared to wavelength: \(F < F_0 \)
- Elements LARGE compared to wavelength: \(F > F_0 \)

Semi-transparent
Low frequency response

Low cut frequency at normal incidence

\[F_0 \approx 68 \cdot \varepsilon \]

where \(\varepsilon \) is the edge density \(P/S \)

perimeter \(P \), surface area \(S \)
High frequency response

Semi-transparent

Elements large compared to Fresnel Zone & Wavelength
High frequency response

Scattering, convex shape

Semi-transparent

Elements large compared to Fresnel Zone & Wavelength
Thank you for your time!

• Free download of this presentation
• More room acoustics and music acoustics, on

www.akutek.info