Orchestra Canopy Arrays

- some significant features

Magne Skålevik,

www.akutek.info

Brekke Strand Akustikk,

Oslo, Norway

msk@bs-akustikk.no

What is an orchestra canopy?

- Horizontal, sound reflecting device
- Suspended, above orchestra, examples:

Single element µ=100% density

Element array, μ =50% density

Canopy justification?

- Measured and predicted effect sometimes weak
 - Even if musicians respond positively
- High rated concert halls without a canopy
 - Musikvereinsaal in Vienna
 - Concertgebouw in Amsterdam
 - Boston Symphony Hall

Canopies can provide...

- Support: Musician hearing oneself
- Mutual hearing among musicians at stage
- Several communication channels for mutual hearing
- Preventing echo from high ceiling
- Early sound (<50ms delayed) to the audience

Support – fill-in-effect

• 5 measurements, 10m source-receiver distance

no canopy

• Fill-in-effect, 10m source-receiver distance

• Initial time delay gap ITDG, at 10m distance

Early reflection to front seats

-Zwr

1 Sunt

- Swit

1 Sunt

13mz

13mz

- The second

Canopies motivated by reducing ITDG in stalls since Tanglewood Shed (1950es)

•Danger! Risk of suppressing lateral sound and wideness

Early energy control by stage volume

 $ST1 \approx 18$ - 10*log(V) due to restricted stage volume V

ST1 \approx - 20*log(H) due to specular reflection alone

Unobstructed transmission

Transmission through orchestra is often obstructed

The canopy path is always available

Synchronism

Wall reflections

Image orchestra

Received: •Out of sync •Level differences dB/m, due to obstructed sound path

Tilted reflector

Canopy caveats and pitfalls

- To low / to dense
 - stage acoustically separated from hall
 - to much sound from above, on stage
 - suppressing lateral sound and wideness (ASW), in stalls
 - obstruction of sightlines from galleries, lighting and stage machinery, and air-circulation
- To high
 - to late reflection
 - to weak effect
- To open
 - to weak effect

Design issues

- Sound level and balance control
- Diffusivity
- Reflection frequency range
- Flexibility variable or fixed in height and angle, individually or grouped
- Coordination with architecture, stage equipment, lighting, ventilation, structural engineering, etc.

Design parameters \rightarrow Design issues

- Overall size of the canopy → Level & Balance
- Surface density (typical 50%) → Level & Balance
- Element size → Frequency Range (important 500-2k)
- Height → Delay & Synchronicity
- Element shape and scattering

→ Diffusivity and Frequency Range

Conclusions

- Canopies not a "must have"
 - If ceiling and walls provide adequate over-stage volume and height
- Canopies can provide
 - Support & Early Energy control
 - Unobstructed Sound Link (always "visible")
 - Early Energy to audience (careful not too much)
 - Synchronized orchestra foldback (good or bad?)
 - Fill-in-effect
 - Diffusivity
 - Evenness, rather than strong effect

Further work and development

- Measurement and predictions of stage acoustics, must take into account:
 - Source directivity
 - Obstruction of sound paths
 - Musicians subjective sound level self and others
 - Masking effects (own instrument, other instruments)
- Investigate significance of
 - Diffusivity and Fill-in-effect
 - Synchronism
 - Frequency range
 - Evenness vs strength (like with reading lights)

Diffusivity

Single channel transmission via specular reflection

Diffusivity

Multi-channel transmission via diffuse reflections

- less affected by directionality and natural obstacles

Diffusivity

Multi-channel transmission via diffuse reflections

- less affected by directionality and natural obstacles

Low frequency response **Elements small** compared to $F < F_0$ Wavelength Semi-transparent **Elements LARGE** compared to wavelength $F > F_0$ Similar Similar Similar Similar - Swit

Low frequency response

Low cut frequency at normal incidence

 $F_0 \approx 68 \cdot \epsilon$

where ε is the edge density P/S

perimeter P, surface area S

High frequency response

Scattering, convex shape

Semi-transparent

Elements large compared to Fresnel Zone & Wavelength

Thank you for your time!

- Free download of this presentation
- More room acoustics and music acoustics, on

www.akutek.info