RBA-11-002-IP A presentation on www.akutek.info :

The Scattering from Reflector Panels with Convex Edges

Jonathan Rathsam and Dr. Lily M. Wang September 7, 2007 19th International Conference on Acoustics Madrid, Spain

Overhead Reflector Panel

- Reinforces onstage sound sources
 - Provides early reflection to audience
 - □ Better communication on stage
 - □ Helps performer monitor own
- 2 performance

Background: Boundary Wave

- A wave that emanates in all directions from the edge of a reflector
 - Maintain continuous sound field despite discontinuity in acoustical impedance
 - Interferes with first order scattered (or radiated) energy to produce a comb filter

Boundary Wave (from loudspeaker)

Identification of Boundary Wave

Nichols [1946] identified the "baffle effect" in loudspeaker measurements

Investigations on Loudspeaker Enclosures

- Olson [1969] investigated loudspeaker enclosures with various edge profiles
- A spherical loudspeaker box produced a smooth frequency response (the "baffle effect" or boundary wave was removed)

Research Question

What is the effect of adding convex edges to reflector panels?

Simulation Set-Up

- 2D / 3D Boundary Element Method (BEM)
- Sysnoise Rev.5.6
- 6 elements per wavelength
- Sources and receivers are located 15 m from reflector panel (typical distance in practice)

Results Divided into Two Sections:

Frequency response at a single receiver

 Beam pattern (magnitude across a semicircular receiver array at a single frequency)

Panels Investigated

(all dimensions in meters)

Results: Frequency Response (i)

Results: Frequency Response (ii)

Results: Frequency Response (iii)

Summary: Frequency Response Results

Panel with convex edges behaves like a
flat panel for specular reflections
round panel for nonspecular reflections

1.50

Frequency Response at various curvature radii

О

 \exists

Panels Investigated

(all dimensions in meters)

4000 Hz Beam Pattern (2D)

 $\overline{\mathbf{A}}$

4000 Hz Beam Pattern (2D) octave band filtered

 $\overline{\mathbf{A}}$

flat convex

4000 Hz Beam Pattern (3D)

Summary: Beam Pattern Results

- In octave-band filtered 2D simulations, convex edge increases reflected response 10 – 15 dB outside of specular reflection zone
- In 3D simulations, nonspecular scattering is reduced considerably

Conclusions

- Convex panels increase scattered amplitude outside specular reflection zone
- Long convex reflectors perform better than jelly-filled donut shaped reflectors
- Sample application for long convex reflectors: above a stage for reflecting sound energy to musicians

RBA-11-002-IP A presentation on www.akutek.info :

The Scattering from Reflector Panels with Convex Edges

Jonathan Rathsam and Dr. Lily M. Wang September 7, 2007 19th International Conference on Acoustics Madrid, Spain

