Acoustical Modeling with Sonel Mapping

B. Kapralos¹, M. Jenkin² and E. Milios³

¹University of Ontario Institute of Technology. Oshawa, Ontario, Canada. L1H 7K4 ²Computer Science & Engineering, York University, North York, Ontario, Canada. M3J 1P3 ³Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 1W5

bill.kapralos@uoit.ca

jenkin@cs.yorku.ca

eem@cs.dal.ca

redefine THE POSSIBLE.

Overview (1):

Motivation/Introduction

- Goal of this work
- Photon Mapping
 - A two-stage, global illumination method

Sonel Mapping

• A two-stage acoustical modeling method

Results

Graphical illustrations

Summary

Motivation (1):

Sound is Essential to Immersive Environment

- Conveys basic information to the users
- Allows users to orient themselves
- Increases situational awareness
- Helps increase immersion and hence presence
- Can enhance perception of poor visual cues

Goal of this Work (1):

- Develop a System Capable of "Accurately"
 Modeling the Acoustics of an Environment
 - Many applications
 → computer games, virtual reality
 & virtual environments, simulators, room design etc...
 - Apply advancements, developments, and the vast knowledge base associated with the field of computer graphics (realistic image synthesis) and optics to acoustical modeling
 - This has lead to the development of a probabilistic, two-stage acoustical modeling method termed sonel mapping

Photon Mapping (1):

- Developed by Henrik Wan Jensen (mid 90s)
 - Efficient alternative to existing ray tracing techniques
 - Decouples illumination solution from scene geometry
 - Handles arbitrary geometry and complex models
 - Faster than existing methods

Photon Mapping (2):

Description

- Generates, stores & uses illumination as "points" (photons, the basic quantity of light)
- Two-pass global illumination algorithm
 - 1. Photon tracing \rightarrow building photon map by tracing photons from light sources through the model
 - 2. Rendering \rightarrow rendering the model using info in the photon map to make rendering more efficient
- Photon map → data structure used to store and process these "points"

"Acoustical Photon Mapping" (1):

- Photon Mapping is Essentially an Energy Propagation Modeling Method
 - The energy happens to be light
 - Can such an approach be adapted for acoustical modeling ?
 - After all, with acoustical modeling it is still energy propagation that we are modeling \rightarrow albeit acoustical energy

Defining the Problem (1):

Sound: Mechanical Wave Phenomena

- Waves emitted from a source propagate through environment and interact with objects/surfaces
- Determine the pattern of sound striking a listener involves following the propagation of a wave through the environment
 - Real world → continuous, complex objects, etc. making it a difficult task!

Propagating _ acoustic (sonar) waves

Defining the Problem (2):

Basic Idea of Sonel Mapping

- Approximate mechanical wave propagation with a collection of small discrete packets (sonels)
 - Trace sonels through environment as they interact with objects / surfaces \rightarrow expensive!

Defining the Problem (3):

A Problem

- When a sonel strikes a surface it can do many things
 - Tracing the sonel will involve splitting it into multiple sonels when it strikes a surface \rightarrow difficult and expensive

Solution

 Only one interaction at each sonelsurface interaction point is chosen

Diffraction/Non-Diffraction Zone (1):

- Determining the Type of Interaction
 - Each surface is dilated by an amount equal to $\lambda/2$
 - Each surface is divided into two regions
 - Non-diffraction zone and diffraction zone

Non-Diffraction Zone (1):

Russian Roulette

• One of specular / diffuse reflection or absorption is chosen probabilistically based on the parameters of the surface and sonel and a random number ξ

- Only one interaction is chosen instead of multiple paths inherent in deterministic approaches
 - Leads to tremendous computational savings!
 - Paths of arbitrary length can be explored unlike traditional deterministic approaches

Non-Diffraction Zone (2):

Specular Reflections

- Assume ideal specular reflections
- Angle of reflection equals angle of incidence

Simple example of specular reflections only in a simple "box-like" environment

Non-Diffraction Zone (3):

Diffuse Reflections

- Assume ideal (Lambertian) reflections
 - Reflection direction is completely random
- Diffuelsy reflected sonels are stored in sonel map

Diffuse reflections only in a simple "box-like" environment

Sonels stored in the sonel map

Diffraction Zone (1):

• What is Diffraction ?

- Bending of sound waves around corners & obstacles
- Spreading out of sound waves through small openings
- Allows us to hear sounds around corners & barriers

- Dependent on wavelength and obstacle size
 - Increases as the ratio between wavelength and obstacle size increases

Diffraction Zone (2):

- Focus of this Work is Edge Diffraction
 - Concerned with the behavior of a wave when it encounters an edge
 - Edges are commonly found in acoustical modeling applications → typical in offices, homes, theatres, concert halls etc. e.g., sound waves bending around corners, doors etc.

Diffraction Zone (3):

- Huygens-Fresnel Principle: Initial Wavefront
 - Wavefront emitted from source propagates until reaching position of diffracting sonel on edge
 - Divided into a number of Fresnel zones \rightarrow adjacent Fresnel zones are separated by $\lambda/2$
 - Each Fresnel zone contains secondary sources
 - Total energy reaching the receiver → sum energy of the secondary sources in first Fresnel zone

Diffraction Zone (4):

- Sampling the First Fresnel Zone
 - Account for wavefront obstruction
 - Sample first Fresnel zone by sending out "shadow" (or "feeler") rays from the receiver to determine how much of first zone is visible
 - Weigh the energy of the first zone reaching the receiver by the percentage of "visible" rays

Diffraction Zone (5)

- Graphical illustration
 - Direct path between sound source and receiver is occluded but sonels diffracted at the edge still reach the receiver

A Two Stage Approach - Stage 1 (1):

Sonel Tracing Stage

 Purpose of the sonel tracing stage is to populate the sonel map

• Sonels are emitted from the sound source and traced through the environment while recording any interactions with any surfaces/objects they may encounter

 Diffuse reflected sonels are stored in the sonel map

A Two Stage Approach - Stage 2 (1): Acoustical Rendering Stage

 Once sonel map has been constructed, complete energy transmission process is computed by tracing out "receiver acoustic rays" from the receiver using Monte-Carlo ray tracing and the Huygens'-Fresnel principle coupled with the sonel map

Graphical Illustrations (1):

Simple "Box-Like" Room

- Sound energy propagation for a stationary sound source and various receiver & occluder set-ups
- Grid of receiver
 positions on the x-z
 plane (const. y)
 - Spacing between positions on both axis is one half of a wavelength

Graphical Illustrations (2):

Direct Sound (500Hz)

• All surfaces were perfect absorbers \rightarrow direct sound only (when not occluded)

Graphical Illustrations (3):

Obstruction (Edge)

- Obstruction present blocking direct path of some receivers \rightarrow diffraction present
- All surfaces were perfect absorbers

Experiments (1):

Validation of Sonel Mapping

- Comparing reverberation time computed with sonel mapping vs. theoretical results → Kapralos et. al. HAVE 2004
- Effectiveness of a Russian roulette approach to acoustical modeling (Russian roulette vs. deterministic approaches)→ Kapralos et. al. AES 2005
- Applying the Huygens'-Fresnel principle to acoustical diffraction modeling \rightarrow Kapralos et. al. HAVE 2005
- Effectiveness of sonel mapping as a complete system \rightarrow Kapralos et. al. ICASSP 2006

Conclusions (1):

- Sound is Crucial in Immersive Systems
 - Incorporating accurate and realistic environmental sound information requires effective and efficient acoustical modeling
 - Sonel mapping is such an approach
 - Sonel mapping is a stochastic, particle-based energy transport model applied to acoustical modeling
 - Photon mapping and Huygens'-Fresnel principle
 - Can model various acoustical phenomena in an efficient manner

Future Work (1):

• Various "Open Problems" Remain

- Would like to address the acoustical modeling of sounds in the very near field (e.g., less than one meter)
 - Can allow for modeling effects such as one person whispering in the ear of another \rightarrow accurately modeling this is a difficult task!
- User Tests
 - Perform user-based studies and account for the "human factor" → ultimately, a human will be the end user!

The End... Thank You! Any Questions ? More free <u>papers</u> and <u>presentations</u> in the field of acoustics, on

www.akutek.info