Low Frequency Limits of Reflector Arrays

Panel array canopy for improved mutual hearing for orchestras in Oslo Concert Hall:

Hypothesis: (below) Cut off frequency *f*₀ is proportional^{*} to the panel edge density ε_{p} . F_{α} , f_1 and f_2 are related to Fresnel Zone size (ellipses), and correspond to Rindel's limits;

 ϵ_{p} = panel edge length / panel area μ = panel area / array area

Reflector response extracted from IR:

Scale models tested:

Selection of scale models varying in edge density ε_p and panel density μ :

0dB REF σ =0% 21cm*30cm

Result example: Reflector surface density $\mu = 0.6$ and panel edge density $\varepsilon_{p} = 105 \text{m}^{-1}$; Best match cut-off frequency f₀ = 12kHz.

Trend from measurements (diagram below):

$f_0 = 68 \cdot \varepsilon_{\rm p}$

where 98% of f_0 variance is due to ε_p variance.

Example of prediction from trend analysis:

Panel array of 50cm*50cm elements has panel edge density $\varepsilon_{\rm p} = 8.0 {\rm m}^{-1}$

Prediction: Cut-off frequency $f_0 = 540$ Hz

Theory predicts $f_0 = 41 \cdot \epsilon_p$, see Proceedings