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ABSTRACT 
In room acoustics as well as in noise immission prediction, ray tracing methods or the hybrid 
method of beam tracing are common. These are energetic methods made for short wavelengths 
and therefore neglecting diffraction. To introduce diffraction but preserve the advantage of ray 
tracing, Stephenson has earlier proposed a sound particle diffraction model based on Heisen-
bergs uncertainty principle. This model has now for the first time been embedded in a full ray 
tracing program for general set-ups of sources and receivers, and also been transformed into a 
beam tracing model. This paper compares these new models with the exact wave-theoretical 
results of Svensson´s secondary edge source model which is based on the exact Biot&Tolstoy 
solution. Reference cases were the semi-infinite screen as well as two parallel wedges  forming 
a slit. For most cases the agreement is very good (less than 1dB). So, ‘Heisenberg’ seems to be 
a useful approach not only for light but also for sound. It is investigated and discussed whether 
this can be generalized for multiple diffractions. Finally, this new beam diffraction method may 
also be combined with Quantized Pyramidal Beam Tracing, an efficient algorithm with re-
unification for higher order sound diffraction by Stephenson. 
 
INTRODUCTION  
In computational room acoustics as well as in noise immission prognosis (‘city acoustics’) the 
mirror image source method (MISM) [1], ray tracing (RT) or beam tracing (BT) are used, and 
these are methods for the optical limiting case of short wavelengths. A version of RT is the 
sound particle method [2] which, rather than the 1/r²-law, uses the more efficient statistical 
evaluation of the immitted intensities in detectors crossed by the particles. The main deficiency 
of all these methods is their lack of diffraction simulation. Therefore, the introduction of a diffrac-
tion module into ray tracing would be highly desirable, at least as an approximation for short, but 
not very short wavelengths. The diffraction modeling should fulfill the ‘detour law’ [3], also for 
arbitrary diffraction orders and combinations with reflections (but as a pure diffraction module 
without accounting for flanking walls, reflections are handled by another module). Due to the 
use of ray tracing as the framework, two basic hypotheses are that diffraction happens only 
near edges (mainly  edges that protrude into a room), and that incoherent (energetic) super-
position can be used. However, any combination with the MISM or the sound particle method 
leads to an explosion of the number of reflection/diffraction-combinations and therefore also the 
computation time. Best is a straight forward method as RT. Even more convenient is a hybrid 
method as BT. ‘Beams are mirror image sources with built-in visibility limits’, so, BT is an effi-
cient version of the MISM. The Geometrical Theory of Diffraction (GTD) [4], or its improvement, 
the Uniform Theory of Diffraction (UTD) [5], are both high frequency approximations that may in 
principle be combined with the MISM. Funkhouser utilized a very fast version of BT for auraliza-
tion in room acoustics [6], even including diffraction in form of the UTD [7]. But still, with higher 
order reflections and diffractions the computation time explodes. 
One of the basic ideas for solving the problem of computation time explosion is: not all com-
binations and paths of diffracted/ reflected rays or particles are important - only those where 
particles pass close to edges, where the bending effect on a sound particle is stronger the 
closer the by-pass-distance. At an edge diffraction event, the particles should be split up into 
many secondary ones, each carrying a part of the energy of the incident ones. This was the 
idea of the ‘sound particle edge interaction model’ (SPEIM) by Stephenson [8], however only for 
receivers at infinite distance. As this rather heuristical model did not seem satisfying, the first 
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author succeeded in deriving a sound particle diffraction model analytically from the Fresnel-
Kirchhoff theory [9]. This model, on the other hand, failed for more than one edge, so it can not 
be used as an elementary diffraction module. 
 
With any recursive split-up of rays the number of rays, and hence the computation time, ex-
plodes. As long as this crucial problem is not solved, there is no chance for any general ray 
diffraction model. The basic idea for solving this explosion problem is a re-unification of (simi-
larly running) rays. This is a very difficult problem and only possible if rays are traced in a quasi-
parallel and iterative re-distribution process. Also, rays have to be spatially extended, i.e. rather 
beams, in order to exploit their overlap, to interpolate and to re-unify them. A solution to all 
these problems is the Quantized Pyramidal Beam Tracing (QPBT) by Stephenson, [10]  - a 
method to efficiently re-unify pyramidal beams.  
 
As intermediate steps on the way to the ultimate QPBT method, this paper applies the ‘old’ 
sound particle diffraction model (SPEIM) to more general set-ups, and transforms it to a beam 
tracing formulation which can then combined with QPBT. So, the SPEIM is then for the first time 
embedded in a full ray tracing program and also transformed to a more efficient beam tracing. 
 
THE SOUND PARTICLE-EDGE INTERACTION MODEL 
The uncertainty principle 
The idea that the diffraction effect on a particle is stronger the closer the by-pass-distance is 
inspired by Heisenbergs Uncertainty-Relation (UR), known from quantum mechanics: 

hpy y ≈∆⋅∆   where y∆  is the by-pass distance to the edge, interpreted as the ‘uncertainty’ in 

y, yp∆ is the impulse uncertainty at the point y in space and h is Planck`s constant/ π2 . One may 

object that acoustics is not happening in atomic scales. But, dividing the UR by h (using de 
Broglie’s  equation 

yy khp ∆⋅=∆ ) yields 1≈∆⋅∆ yky , which is without any atomic constant. This 

is also a consequence of the Fourier theorem. kk y /∆  is then the uncertainty of the direction of 

the wave vector in the y-direction. Analogous equations are valid for the other coordinates. So, 
it should be possible to utilize the UR to create diffraction algorithms for any kind of particles, 
photons as well as phonons, hence, it should be valid also for acoustics. This idea has inde-
pendently and later been successfully utilized in numerical methods for light diffraction to opti-
mize optical systems [11, based on 12].  It should be noted that if the edge (= the z-axis) is infi-
nite, then ∞→∆z  and there is no reason for any diffraction in the z-direction, we do correctly get 

0=∆ zk . This observation is important in the context of the discussion how to generalize the 2D 
diffraction to 3D: there is no additional effect as edge diffraction happens only in the area per-
pendicular to the edge, it is basically a 2D effect. According to its nature, the UR must be inter-
preted statistically. The new diffracted ray direction is never an exact value but obeys a prob-
ability distribution of deflection angles, or, equivalently, rays are split up into new ones with par-
tial energies according to that distribution. To allow a modular system, after that ‘detour into 
wave theory’ the rays should be superposed 
energetically. There are two basic concepts in the 
implementation of this method, the ‘Diffraction angle 
probability density function’ (DAPDF) and the ‘Edge 
Diffraction strength’ (EDS). For an overview, see 
fig.1. 
 
 
Fig.1: Illustration of the sound particle diffraction model [8]. 
The moment a particle passes an edge (‘Beugungskante’)  
of a screen (‘Schirm’) at a distance a (lower figure) it 
‘sees’ a slit (upper figure). According to the uncertainty 
relation a certain ‘Edge Diffraction Strength’ (EDS) causes 
the particle to be diffracted according to a certain ‘Diffrac-

tion Angle Probability Density Function’ (DAPDF= ( )εD ) 

derived from the diffraction of waves at a slit, see fig. 2. 
The lower figure also shows an angle window (‘Zählfen-
ster’) used to count the diffracted particles and to add up 
their energies to the transmission degree. 

http://en.wikipedia.org/wiki/Uncertainty_principle
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The DAPDF 

The DAPDF is derived from the well known Fraunhofer diffraction at a slit 
22 /sin vv∝ , where 

επ ⋅⋅= bv . The DAPDF (averaged over a wide frequency band, actually over an octave-band 
averaged  as for ‘white light’),  is roughly approximated  
    ( ) ( )2

0 21/ vDvD +=  with ε⋅⋅= bv 2 ,     (Eq.1) 

where b is the apparent slit width in wavelengths, ε is the deflection angle and D0 is a normaliza-
tion factor such that the integral over all deflection angles is 1. The D0-factor must be computed 
for each edge by-pass since its value depends on b and the angle limits of the wedge. In the 
following all distances are expressed in wavelengths. (A somewhat improved approach for the 
DAPDF was used in [8].) 

 
 

 

 

 
Fig. 2: Left: the derivation of the DAPDF (axes are the 
deflection angle (‘Ablenkwinkel’) and the transmission 
degree in dB) showing the function 22 /sin vv∝  (dashed 
curve). Right: an energy histogram for a bypass distance 
of 1/2 and a slit width of 3 (distances rel. to λ). 75% of 
the incident energy is deflected into the angle range of -
15…15°, only 2% into backward directions (<-90°, 
>+90°).  
 

The EDS 
To develop a modular model which is applicable also to several edges that are passed near-by 
simultaneously, the ‘Edge Diffraction Strength’ (EDS(a)) is introduced such that the EDS of sev-

eral edges may be added up to a total TEDS , ∑= iEDSTEDS .   (Eq.2) 

To be used as input for the DAPDF, an ‘effective slit width’ is TEDSbeff /1= .  (Eq.3) 

By self-consistency-considerations (a slit should re-produce the energy distribution of itself) it 
turns out that      ( ) ( )aaEDS ⋅= 6/1     (Eq.4) 
So, with only one edge, a by-passing particle would ‘see’ a relative slit-width of beff=6a.  
 
Method of evaluation 
Fig. 3: The superposition of DAPDFs in dB 
of single particles from a source at -10 λ  
passing at different distances (see fig. 1) 
summing up to the screen transmission 
function (as, e.g., in fig. 7).  
 
The transmission degree is defined as 
T = intensity with the diffraction of an 
obstacle rel. to the intensity in free field where ‘intensity’ in 2D is ‘sound power/width’ of a detec-
tor instead of ‘power/surface’ but the proportion of T is the same in 3D. This particle diffraction 
model has now been combined with a full 2D sound particle tracing algorithm. One example of 
transmission level distribution behind a screen can be seen in fig.4. 
 
RESULTS OF GENERALIZED RAY DIFFRACTION EXPERIMENTS  
For a systematic analysis, the 2D ray tracing was evaluated for sources and receivers (detec-
tors of convenient sizes) at finite distances of 1,3,10,30,100 (wavelengths) and 15 angles -
84…+84° (in steps of 12°, seen from the edge), appl ied to the semi-infinite screen, in total 375 
combinations. This was first compared with the known angle function of the screen [3]. At the 
first go (without any parameter fitting), the agreement with the reference function (Maekawa) 
was very good for almost all cases, also for finite distances (standard deviation of <0.5dB, 
curves similar as in fig.7). Importantly, the reciprocity principle is fulfilled (same levels with a 
permutation of source and receiver).  
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Fig. 4: Transmission level 
distribution for screen 
diffraction by ray tracing  
(‘room’ of 200 λ *200 λ , i.e. 

40000 quadratic 1 λ -
detectors, 300 primary * 300 
diffracted rays, source at x = 

-30 λ , y = 0; to the right the 
color legend; bottom right 
the ‘shadow’ region with blue 
colors; 55 immitted particles 
per detector resp. 0.5dB 
statistical uncertainty. 
Numerically, a decisive quantity is the number of incident particles within a close by-pass dis-
tance, amin (which should be about 0.1 λ ), and a maximum by-pass distance of amax= 7 λ ; be-

yond that, direct transmission may be performed. The orientation of the ‘diffracting surface’ 
‘above’ the screen (dashed lines in fig. 5) has only a weak influence (at +-45° less than 1dB). 
This is important as in QPBT (the method finally 
aimed at) a pre-condition for an effective pyramidal 
beam tracing is a subdivision of the room into 
convex sub-rooms where on the transparent dividing 
‘walls’ diffraction events at ‘inner edges’ may be 
effectively detected.   
 
Fig. 5: Subdivision of a room into convex sub-rooms (in 
2D): ‘transparent’ dividing walls are dashed; a ray is 
scattered/diffracted several times on these ‘walls’ near 
edges (only one path is drawn) 
 
FROM RAY TO BEAM DIFFRACTION AND RESULTS  
As argued above, the critical re-unification possibility of QPBT requires beam tracing rather than 
particle tracing to be combined with diffraction. Also the number of secondary diffracted beams 
could be reduced considerably. In order to reach a certain numerical accuracy particles require 
a higher number crossing each detector (e.g., about 70 for 0.5dB uncertainty), than beams do, 
since for mirror image sources, there is no stochastic variation and the 1/r² -distance law may be 
applied to compute the immitted intensities at the receiver points (in 2D a 1/r-law). To compute 
the immitted intensities in 2D at one receiver, the following formulae are valid: 
For sound particles the typical immission formula [2]   | for beams the 1/r-law:  
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where the ( ) 1'0 , << nMD β  are the energy fractions of diffracted rays (integrals of the DAPDF) 

in the angle range β∆  of the Mth incident and each of the nth diffracted rays, ( )MD β  is the 
same for the Mth incident beam –which is also the Mth relevant diffracted beam - , R is the di-
rect distance source-receiver, rBM are the distances bending point -receiver, Sd the detector 
surface for sound particles and wMn are the inner 
crossing distances of particles in detectors. For one 
receiver, only one loop over all beams (M=1…M0) is 
necessary, not a secondary loop over each time an 
additional number of secondary particles (n=1…n0).  
       Fig. 6: 2D beam diffraction, specialized for the screen 
(black wedge in the middle): Typically 10…100 beams (‘fans’ 
in 2D) (left, pink) arrive within the decisive by-pass distance 
range of 0…7 λ (here exaggerated). The direct sound passes 
above (yellow). To reach all receivers beams are split up into 
15 secondary beams (preferably the same number as receiver 
directions on the rear side). To the right the diffracted beams: 
the darker the colour the higher the intensity (see fig. 1, resp. 
the DAPDFs); bottom right the beams relevant for one specific 
receiver are drawn elongated. 
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A criterion for the valid by-pass distance of a beam is, as a compromise, the middle ray’s dis-
tance within the beam. Now, for the 5*5*15 source-receiver position combinations, comparisons 
were carried out between the beam formulation and the former ray diffraction, see fig. 7. 
 
Fig. 7: Example of comparison 
between beam diffraction (blue) 
and ray diffraction (green). The 
transmission degree in dB is given 
as function of the receiver angle, to 
the left the ‘shadow’ region: only 
0.29dB standard deviation. (red 
curve: deviation* 10) (1000 incident 
* 1000 diffracted particles , vs. 70 
incident * 31 diffracted beams 
within amax=7 λ ,source and receiver 
distance: 10 λ , source at y=0). 
 
The agreement is very good: the standard deviation of the difference between ray and beam 
tracing for all 375 combinations is only 0.67dB. Beam tracing is on the order of more than 10 
times faster than ray tracing. To exclude any numerical error due to the finite number of beams, 
a comparison with an ‘infinite number’ of beams i.e. a (numerical) beam integration was also 
carried out (over an equ. as 5b).  The difference between those results (for the 70*31 beams of 
fig. 7) was on average only 0.38dB (standard deviation). The direct comparison between beam 
tracing and the Maekawa screen transmission functions yielded a standard deviation of 0.74dB.  
 
The coherent secondary edge source model as analyti cal reference model 
As preparation for comparisons with more complicated set-ups (more edges) analytical results 
were needed. Svensson [13] has presented a secondary edge source model in 3D with analyti-
cal directivity functions ( β , involving the two incident and the two exit angles for each edge 
source) based on an exact time-domain solution for an infinite rigid wedge [14], [15]. The sec-
ondary waves of several edges are superimposed coherently.  
 
Fig 8. Diffraction points on the edge 
and corresponding samples of the 
impulse response (left) , m and l are 
the distances to and from the edge 
source (right) 
 
 
 
The time-discretized impulse response IR (for sample no. n which is proportional to the distance 
m+l) can be written as 

    ( ) ∫Θ
−=

2

1

4

1
z

z
dz

ml
nIR

w

β         (Eq.6) 

where WΘ  is the exterior angle of the wedge, z1 and z2 the integration range limits on the edge 

(=z-axis, which may be finite). In contrast to the UTD, the model in [13] is valid also for lower 
frequencies, but only for hard wedges. Letting edge-sources re-radiate following edges, the 
method can be recursively applied for higher orders– but (due to the non-spherical secondary 
waves) with inaccuracies, especially for the slit. The problem of the computation time explosion 
is not solved either. The IR of the 
reference model were Fourier trans-
formed and the transfer functions 
octave band averaged. The standard 
deviation for all combinations is only 
0.39dB!   
Fig. 9: Example of a comparison between 
beam tracing (green) and Svensson’s 
reference method (blue) (same legend as 
for fig.7.) 
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The reference model permits any wedge inner angle so the influence of that angle was investi-
gated. For smaller inner angles the influence is low, but for the case of 90°, compared with 0°, 
the differences in the transmission levels are up to 4dB  (mean difference are typically 0.4dB). 
Furthermore, in the reference model, hard flanking walls are assumed (as boundary condition, 
not the addition of their reflection itself) whereas in the interaction model based on the UR only 
the position of the edge is relevant, not any flanking walls.  
 
Finally, the diffraction at two edges in 
parallel forming a slit was investigated (as 
a self-consistency-test for the SPEIM). So,  
now the EDS of the two edges were 
added (Eqs. 2-4).  
 
Fig.10: Addition of the DAPDFs of beams 
crossing a slit of two edges (below); (Source 
and receiver distance = 99 λ ); in the middle 
(green and violet) the sum i.e. the total 
transmission as the function of the receiver 
angle (compared with the free field 
transmission for the same sound power as  
incident on the slit); above the deviation curve). 
 
The reference function was the DAPDF of the respective slit width itself. The result was again a 
very good agreement – at least for far sources and receivers. (For nearer distances, i.e. non-
parallel incidence, the agreement can not be good, as the classical slit diffraction function is not 
valid). In near future, results of a generalization to higher order diffraction will be presented.  
 
CONCLUSIONS AND OUTLOOK 
The agreements were in all cases very good.. Consequently, it seems like Heisenberg’s UR 
may be applied also to acoustics and sound may be handled as particles even with diffraction. 
In principle, it should not be a problem to extend the presented model to 3D and to multiple 
diffractions. So, a combination of beam diffraction procedures with QPBT is now possible with-
out explosion of computation time. The application to room and city acoustics comes closer. 
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