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INTRODUCTION 

Below the room acoustical high-frequency region limit, the so-called Schroeder 

Frequency, the frequency response of the room is dominated by room modes, 

which is determined by room geometry. Room modes are reported by many 

authors to cause ”boomy” sound and other coloration effects, which can be 

disturbing in rooms where speech or music is an important part of normal use. 

Ways to avoid these small room acoustics problems have been suggested, 

including recommendations for room ratios for cuboids, careful choice of building 

material, and surface treatment involving absorbers and diffusers. Still, there are 

many important cases where suggested means are not applicable.  This paper is 

focusing on the hard wall and rigid geometry cases, aiming to define criteria for 

proper treatment in the hard case: Rectangular room with hard walls and floor, 

and hopefully allowance for an absorbing ceiling. 
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Small room acoustics – the hard case 

Magne Skålevik 
AKUTEK www.akutek.info 
Senior acoustical consultant, Brekke & Strand Akustikk, Oslo, Norway 

Summary 
To avoid disturbing coloration in rooms where speech, music, listening or recording is part of 
normal use, damping of modes is critical, regardless of their spacing. Modes cannot in general be 
treated with ordinary broadband reverb measures. Results from the virtual test room described in 
this paper show that in cuboids with hard plain walls and floor, even a perfect ceiling is not able to 
control modes travelling in the horizontal plane. The Modal Scattering Coefficient and a way to 
predict modal reverberation time is suggested. Hard diffusers can provide relatively short modal 
reverberation times, but necessary treatment may have to cover 50% of wall surface. This paper 
deals with the many cases with hard walls and no freedom to choose room ratios. 

  

 
1. Introduction1 

Below the room acoustical high-frequency region 
limit, the so-called Schroeder Frequency [1], the 
frequency response of the room is dominated by 
room modes, which is determined by room 
geometry. Room modes are reported by many 
authors to cause ”boomy” sound and other 
coloration effects, which can be disturbing in 
rooms where speech or music is an important part 
of normal use. Ways to avoid these small room 
acoustics problems have been suggested, including 
recommendations for room ratios for cuboids, 
careful choice of building material, and surface 
treatment involving absorbers and diffusers. Still, 
there are many important cases where suggested 
means are not applicable.  This paper is focusing 
on the hard wall and rigid geometry cases, aiming 
to define criteria for proper treatment in the hard 
case: Rectangular room with hard walls and floor, 
and hopefully allowance for an absorbing ceiling. 
 
2. Previous work 

Since Bolt (1946) [1], in the aim for evenly spaced 
modes, came up with a method for determining 
preferable room ratios, researchers have continued 
to search for the optimum room dimensions based 
on various criteria. A review of papers in this 
special field of small room acoustics was given in 
a paper by Cox and D’Antonio[16] in 2004, 
together with a new approach, aiming for flattest 
possible frequency response. Among other authors 
                                                      

 

contributing to small room acoustics from the 
1940’s until present are Volkman [1], Boner [2], 
Sommerville and Ward [4], Gilford[6], Louden[8], 
Bonello [11], Walker [12][13], Neuwland [10] and 
Weber. Splaying one or two walls may improve 
diffusion, but does not eliminate modal 
problems[5]. Geometries deviating from 
rectangular sections (slanted walls, etc) do not 
make coloration disappear, only harder to predict 
(Gilford 1972) [9].  
 
3. The hard case 

In many cases the acoustic consultant gets the task 
of providing or improving acoustics in a room for 
speech or music at a time or under conditions 
when the geometry is set, and materials cannot be 
freely chosen. The reasons for this lack of freedom 
can be many, and is not necessarily a result of poor 
planning. Practical reasons, floor area demand, 
robust surface requirements, and last but not least 
financial constraints, are very common. Not to 
mention gravity, making anything but vertical 
walls difficult to build, and a horizontal floor a 
human right. 
In particular, the following case is to be 
investigated. 
 
A cuboid room with four hard vertical walls, a 
hard floor, and place for absorbents somwhere 
in the ceiling only. A free choice of room ratio 
in the context of previous work is out of the 
question. Only hard elements may be added to 
wall and ceiling, preferably as high as possible 
in order to save floor space. 

http://www.akutek.info/�
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Relevance of the hard case is evaluated and argued 
for in Table 1 below. 
We require that the problem solving can be 
supported by simple computation methods, 
however to be verified by measurements, FEM 
and/or BEM. In short, we require the hard case to 
be solved easily.  
 
Room category Relevance of Hard Case 
Wherever speech 
is part of normal 
use 

High. Large percentage of 
rooms. Coloration annoying, 
besides discriminating people 
with difficulties in hearing. 
Increasingly relevant in light 
of Universal Design and 
minimalistic trends in design.   

Music rehearsal High. Though special rooms 
in general gets higher priority, 
thus avoiding the Hard Case, 
the remaining cases are all the 
more important to solve, due 
to high demands for 
acoustical quality.  

Recording 
Critical listening 

Table 1 Evaluation of relevance of the hard case 

4. Acoustical requirements 

As a starting point, we choose to define some 
criteria for the tonal response of the room. 
Coloration and boominess shall be controlled, in 
particular the excess response to complex tones 
with harmonic (line) spectra typical from voices, 
strings and wind instruments, etc.. 

1. Mode decays shall obey the general 
reverberation time limits for the actual 
frequency region (e.g. octave band) 

2. Harmonic series of room modes shall be 
eliminated, or at least suppressed to 
prevent detection of pitch, i.e. suppression 
of pitch response 

 
We would like to establish an arrangement to 
predict the effect of such hard diffusing elements 
and we therefor try to design a ”virtual test 
facility”, described below. 
 
5. Exploring axial modes 

In this chapter we seek deeper insight by exploring 
axial modes in a virtual, loss free, test room.  
Mode frequencies are given by (1), 

 
where nx, ny and nz are integers and Lx, Ly and Lz 
are the room dimensions in the x, y and z 
direction. 
From theory, the half-power (3dB) bandwidth B of 
modes depends only on reverberation time 
 

(2) 
 
, while average mode spacing ∆f depends on room 
volume and frequency 
 
 
 
  
Average mode spacing in the Modal Region 
should not be confused with average spacing 
between maxima 4/T in the Schroeder Region[17]. 
Modal peaks at frequency f can be described by the 
Q-factor Q=f/B. 
Empirically, we have results from Sommerville 
and Ward [4] (1951), that hard rectangular 
elements on walls will act sound-diffusing when 
they are thicker than 1/7 of a wavelength, ∆x> λ/7. 
In practice this limit is, not unexpectedly, 
equivalent to 
  k∆x >1      (4) 
 
The virtual test room 
In a virtual cuboid room with hard surfaces and 
dimensions Lx, Ly and Lz in x, y and z- directions 
respectively, modal frequencies can be calculated 
from (1). We assume no energy losses in air or 
boundaries. See Figure 2. 
 
Now let the distances Ly and Lz approach infinity. 
As a result, (1) will simplify to  

f=0.5·nx·c/x      (5) 

(3) 

Figure 1 The hard case. Only ceiling is absorbent. 
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or the common approximation  
f=170·nx/x,     (6) 

modes with wave components travelling 
perpendicular to the x-direction will vanish, and 
the Q-factor for a mode at frequency will approach 
infinity. A point source inside the room will have 
image sources spaced on average Lx apart along a 
line through the source and parallel to the x-axis. 

  
After sufficient driving-time t, image sources in 
both directions far from the room will send 
approximately plane waves in opposite directions, 
equally strong, interfering in the room, building up 
the so-called standing wave, increasing in 
amplitude with time, but only inside an ever 
narrower frequency interval ∆f=K/t, where K is a 
constant. After a time t, the amplitude will not 
increase outside this interval.  
Keep in mind that the behavior of ideal modes, or 
standing waves, can be described simply by two 
equally strong plane waves travelling in opposite 
directions, interfering at a point of interest. So 
planeness and restricted curvature is essential. 
Curvature of the wave at time t can be described 
by measuring the maximum deviation 

ξ= y2/(ct)      (7) 
from an ideal plane wavefront disc perpendicular 
to propagation and width of diameter 2y and area 
πy2. Planeness can be expressed by the area 

Splane,disc = π y2 = π ct·ξ   (8) 
of the largest plane disc from which the wavefront 
deviates less than ξ , or equivalent, the largest 
plane square contained by the disc 
 Splane,square =  2ct·ξ     (9) 
Related to curvature is the ratio of the transversal 
component to the axial component in the 
wavefront having travelled the distance ct from its 
source. In our test room, within the distance y from 
the x-axis, the outward-travelling vector-

component must be less than y/ct times the axial 
component: 

vtrans /vax < y/ct = ξ /y              (10) 
In a modal study involving diffusing elements of 
thickness ∆x we require wavefronts that are plane 
compared to the surfaces, and elements involved 
down to, say 40Hz. We need to combine k∆x >1 
with ξ <<∆x, leading to ∆x >1.4m and ξ <0.14m if 
we require 1:10 resolution. Thus, for waves having 
travelled for more than 1.0 second, the required 
planeness would by (9) apply to square surfaces of 
approximately 90 m2, which is more than large 
enough for small room studies. Valid area is inside 
radius of y=6.8m where vtrans /vax <0.020. In terms 
of intensity this means that there is a non-zero 
energy dissipation from the test area to be kept in 
mind. We shall return to this below. 
We can conclude this far that later than one second 
after the source is turned off, the interfering waves 
would be sufficiently plane for the accuracy 
required. And this is exactly how we shall proceed 
– we shall turn the source off and see what 
happens. 
We have established a test facility between two 
parallel hard surfaces spaced by the distance Lx, 
with a point source placed centrally in an area of 
90 m2 satisfying our precision demands given 
above. Note that in this room, no transversal waves 
travel back towards the source. 
For simplicity we shall turn off the source at the 
time t=0. After 1.0 seconds, the direct (non-modal) 
sound components will have travelled a distance of 
340m away from the source, so inside this radius, 
all there is left is a standing wave driven by the 
image sources positioned along the x-axis, as 
described above. Now return to the possible 
dissipation of modal energy related to non-ideal 
plane waves and their transversal component: 
If we interpret the ratio vtrans /vax = y/ct to be the 
ratio of transversal intensity to axial intensity, 
Itrans/Iax, where total intensity I=(Itrans

2+Iax
2)0.5. And 

since we have Itrans<<Iax, we can replace Iax with I: 
Itrans/I = y/ct => Itrans = y/ct∙I.        (11) 

Now since intensity equals energy density 
multiplied with speed of propagation, I=ε∙c, the 
transversal intensity describes the dissipation of 
modal energy out of the test volume: 
 Itrans < ε∙ y/t                          (12) 
Since the valid radius of the test area is y, the test 
volume has the form of a cylinder with radius y , 
and height Lx, and the volume can be calculated by  

V = πy2· Lx                (13) 

Lx 

Ly→∞ 

2nd order image 
source and its 
wavefront 

Figure 2 Axial mode study. x-y-plan of virtual 
cuboid, hard, test room with Ly and Lz approaching 
infinity, containing source (red dot) and a reciever 
collecting wavefronts from axial image sources.  
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Letting ε be the energy density after the necessary 
elapse of time after the source stopped, the total 
energy of the valid test volume is  
 E0 =  ε·V= ε ·π y2· Lx              (14) 
Around the test volume is an imaginary cylindrical 
surface Ssyl= 2π y · Lx through which the intensity 
in (11) causes modal energy to dissipate from the 
volume by a rate per second of 
 Pd < Itrans· Scyl= ε /t· 2π y2 · Lx              (15) 
Whenever dissipation from a system relates to the 
momentary energy contained by the system, 
exponential decay with level changing with time 
proportional to B·t  can be expected, where the 
half-power bandwidth B is proportional to the ratio 
of dissipated energy to the stored energy,  
 2πB= Pd /E0 <2/t.            (16) 
Since this leads to B·t = 1/π being a constant and 
thus the level being unchanged with time, we can 
draw the somewhat surprising conclusion: 
While energy is dissipated out of the test volume 
via large openings, the stored energy of the mode 
remains unchanged, given lossless boundaries and 
lossless air.  
In order to explain this apparent contradiction we 
must remember that a mode is an ideal 
phenomenon. Being mono-frequency involves 
infinite duration and perfect plane waves, modes 
can only be approached as time goes to infinity. 
This is also the reason for the ever-narrowing of 
the bandwidth ∆f=K/t with increasing duration t 
during the build-up phase described above. 
Combined with the result in (15), K=1/π, since the 
bandwidth in question is no other than the half-
power bandwidth 

∆f=B = 1/(π t) .            (17) 
So, in the test volume described above, after a time 
t after the turning off of the source, the modal 
energy is conserved, while energy from wave 
components of frequencies outside the frequency 
interval centered at the mode, ∆f=K/t, will 
dissipate. In the spatial domain these are the 
curved components of the wave, literally bending 
their way out of the test volume. Inside ∆f the 
energy is conserved as long as boundaries and air 
is lossless. 
One interesting consequence of the result above is 
that the imaginary cylinder surface introduced in 
(14), defining the test volume, could be replaced 
by a perfect absorbing surface, since no sound 
propagates inward from there anyway. After the 
sufficient time (e.g. one second in the example 
above) after source-off, the energy dissipated (14) 
from the volume V would be absorbed by the 

perfect absorbent represented by the imaginary 
cylinder surface, from which no energy returns. 
Returning to the Hard Case, the objective of this 
paper, one cannot from the results above expect 
the ”perfect component” of a mode to be damped 
by a plane ceiling, even with perfect absorption 
coefficient, as long as the waves involved travel 
tangentially to the ceiling. And this is exactly the 
common cuboid hard case.  Of course, the ceiling 
will absorb sound, but only the non-perfect 
components outside the frequency band,   1/(πt) 
wide, centered at the mode frequency. 
 
6. Introducing hard diffusers to hard 

walls 

In the virtual test room described above, we shall 
mount the hard rectangular elements, requirement 
given in (4), evenly distributed over one of the 
parallel wall pairs separated by the distance and Lx. 
Let the hard diffusing elements have rectangular 
face with surface area Sd and height ∆x. 
From diffraction theory we can predict the 
diffracted pressure from a hard wall segment of 
size 2Sd , containing the element of area Sd. If we 
refer to the part of the wall segment outside the 
element as the base an let its area be 2Sd – Sd = Sd , 
the pressure components from base and element 
face will be in-and-out of phase for wave numbers 
k such that k∆x>1, resulting in an effect similar to 
the comb-filter from two coherent signals of same 
strength (the same strength of the two diffraction 
components here is due to the equal size of the two 
reflecting surfaces. At frequencies (values of k) 
where they are in-phase, the element would make 
no difference at all. On the other hand, at 
frequencies where they are out-of phase, the 
pressure would be zero. As a result, the combined 
reflection in axial direction from element and base 
will on average be reduced to half the power 
reflected from the same segment without the 
diffusing element. However, the power reflection 
spectrum from the segment would fluctuate 
sinusodially between 0 and 1.   
So, in practice, the diffusing element of the wall is 
made up by the face and the base, covering the 
wall area of size 2Sd. This becomes obvious if one 
tries to cover the whole wall completely with 
diffusing elements: Instead of obtaining maximum 
diffusion, one would have established a new hard 
plane wall. The face-and-base element has an 
effect on the power reflection of the plane wave 
that may be termed the Modal Scattering 
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Coefficient sm of the diffusing wall segment with 
surface area 2Sd. Consistent with related standard 
coefficients we define sm as the portion of the 
incident modal power that is neither absorbed, nor 
reflected back into the mode.    

sm = 1 – rm – αm              (18) 
In general sm is a function of frequency, but a 
convenient single-number value would be the 
frequency-averaged power ratio. In our test room, 
αm=0, so sm = 1 – rm, and in the case of the face-
and-base diffusor above, its single number value is 
 sm = 0.5             (19) 
Note that in this modal context, reflection rm is 
strictly the fraction of incident power reflected in 
the direction of the modal plane wave propagation. 
With the normal reflections occurring for standing 
waves between parallel walls, the modal reflection 
is equal to the specular reflection, but this equality 
is not valid in general. 
Now, what happens to the scattered energy after it 
has been forced out of the mode by the diffuser? 
Well, the only alternative to conservation in the 
mode is to be dissipated through the 
aforementioned absorbing boundary closing the 
gap between the parallel hard walls. Any wave 
component travelling in non-axial direction will 
sooner or later be absorbed.  
As a result, scattered energy can be considered 
equivalent to absorbed energy, which is very 
convenient, since then one can utilize theory and 
tools for dissipation from a closed volume 
developed by Sabine, Eyring and others. 
Using Sabine’s Formula, T = 0.16·V/A, where A is 
the absorption area A=Σα· S, applying the 
equivalence between absorbed energy and 
scattered energy, valid in our virtual test facility, 
we replace the absorption coefficient α with the 
modal scattering coefficient sm. Absorption area A 
in the formula can thus be replaced by the 
equivalent Modal Scattering area Ss,m = Σ sm·S. 
Now let Ss,m =sm·2S be the scattering area provided  
when sm is the average modal scattering coefficient 
over the total wall area 2S of our modal test room. 
Since the volume equals V=S·Lx, the surface factor 
cancels out of the formula and V/Ss,m= Lx/2sm.  
Finally, the modal decay can then be predicted by 
the reverberation time of the axial mode, 

Tm = 0.16· Lx/2sm .             (20) 
Example: Let the parallel wall spacing be Lx=4.0m. 
Further, place the face-and-base rectangular 
diffusors with scattering coefficient equal to 0.5 
described above, covering 40% of the surface one 
of the two walls. Then the average modal 

scattering coefficients over the total wall area in 
our test room is sm =0.5·0.4·S/2S =0.1, which 
implies 2sm = 0.2. Now inserting in (19),  
 Tm = 0.16· 4.0/0.2 = 3.2 s           (21) 
To achieve the maximum effect from the modal 
scattering, one can cover both walls with the face-
and-base diffusers to obtain sm=0.5 and 2sm =1.0. 
Subsequently the reverberation time of the axial 
modes become 
 Tm = 0.16· 4.0/1.0 = 0.64 s           (22) 
This demonstrates that axial modes can be 
controlled in the Hard Case. However, it requires a 
substantial amount of wall surface being 
geometrically treated to obtain sufficient modal 
scattering.  
For more detailed description of hard diffusers, 
prediction and measurement of their properties, 
readers are refered to the works of Cox and 
D’Antonio [20]. 
 
7. Large geometry diffusers 

Note that the fact that the faces of the diffusing 
elements cover 50% of the wall area, does not 
necessarily mean many small elements. In 
particular, there could be one rectangular box 
placed on the upper half of each wall, leaving 
maximum floor space. In this case, a modal 
reverberation time of 0.64s can be both achievable 
and acoustically satisfactory.  
However, the depth of elements should be 
considered in relation to the need for frequency 
range. Most male voice colorations fall in the 100-
175 region (Gilford 1959)[6], but occasionally 
down to 80Hz. Consequently, most rooms for 
speech needs to control modes down to 100Hz. 
Rooms for music rehearsal, recording or listening 
would need to control modes down to 40-50Hz, 
depending on the particular sources in use.  
In this matter the interpretation of the criterion in 
(4) is critical. As long as the diffusing boxes are 
rather small and randomly distributed, they would 
need to satisfy (4) individually. On the other hand, 
with one large box on the upper half of each wall, 
oposite of each other, the sum of their heights 
would determine their lower frequency limit. 
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8. Conclusion 

Modes can be annoying regardless of their 
spacing. Thus, in rooms where speech, music, 
listening or recording is part of normal use, mode 
control is critical. Modes cannot in general be 
treated with ordinary broadband reverb measures. 
Results from the virtual test room described above 
show that in a cuboid room with hard plain walls, 
even a perfect ceiling is not able to control modes 
travelling in the horizontal plane. The Modal 
Scattering Coefficient and a way to predict modal 
reverberation time is suggested.  Hard diffusers 
can provide relatively short modal reverberation 
times, but necessary treatment may have to cover  
50% of wall surface. 
  
9. Further work 

In order to explore further the possibilities with 
large, hard modal diffusers introduced above, it is 
suggested to study the derivative of f  in (1) with 
respect to varying spacing x=Lx between walls. 
From df/dx = -f/x, we can deduce the relationship 
between resolution in geometry, ∆x, and resolution 
i frequency ∆f = - (∆x/x) ·f. If this is interpreted as 
the bandwidth ∆f  of the mode frequency f as a 
function of the building tolerance ∆x of the 
parallell walls with spacing x, a number of 
interesting applications would follow. Modal 
reverberation time Tm would be limited to Tm < 
2.2/∆f = x/(∆x·f), slanting of wall could be 
described by ∆x, etc. Further, we ask if the power 
distribution inside ∆f  simply is a direct translation 
of the geometrical distribution inside ∆x? 
These speculations will be pursued, verified or 
rejected in further work. 
Another task is to explore the significance of pitch 
detection from complex tones (harmonic spectrum) 
and how different rooms respond to such tones. 
A remaining problem is the full explanation of the 
acoustical problems in the Modal Region (term 
defined in [17]). Coloration is repetedly blamed on 
high peaks, low dips and too wide mode spacing. 
However, these features are common in the high-
frequency region without causing the same trouble. 
 
An important related issue is to determine the 
frequency range of Modal Region [19][17].  

References 

[1] J.E.Volkman, ”Polycylindrical Diffusers in Room 
Acoustical Design”,  J.Acous.Soc.Am., 13 (July 1942), 
p 234-243. 

[2] C.P.Boner, ”Performance of Broadcast Studios 
Designed with Convex Surfaces of Plywood”, 
J.Acous.Soc.Am., 13 (July 1942), p 244-247. 

[3] R. H. Bolt, “Note on The Normal Frequency Statistics 
in Rectangular Rooms,” J. Acoust. Soc. Am., vol. 18, 
pp. 130–133 (1946). 

[4] T.Sommerwille, F.L.Ward, ”Investigations of Sound 
Diffusion in Rooms by means of a Model”,  
Acustica, 1, 1 (1951), p. 40-48. 

[5] Nimura, Tadamoto and Kimio Shibayama, ”Effect of 
Splayed Walls of a Room on Steaty-State Sound 
Transmission Characteristics”, J.Acoust.Soc.Am., 29,1 
(January 1957), p85-93. 

[6] C. L. S. Gilford, “The Acoustic Design of Talk Studios 
and Listening Rooms, 1959, reprinted in “J. Audio. 
Eng. Soc., vol. 27, pp. 17–31 (1979 Jan./Feb.). 

[7] M. R. Schroeder and K. H. Kuttruff, ‘‘On Frequency 
Response Curves in Rooms. Comparison of 
Experimental, Theoretical, and Monte Carlo Results for 
the Average Frequency Spacing between Maxima,’’ J. 
Acoust. Soc. Am. 34, 76–80  1962. 

[8] M. M. Louden, “Dimension Ratios of Rectangular 
Rooms with Good Distribution of Eigentones,” 
Acustica, vol. 24, pp. 101–104 (1971). 

[9] C.L.S.Gilford, ”Acoustics for Radio and Television 
Studios”, (1972), London, Peter Peregrinus Ltd. 

[10] J.M. van Nieuwland and C.Weber, ”Eigenmodes in 
Non-Rectangular Reverberation Rooms”, Noise 
Control Eng., 13, 3 (Nov/Dec 1979), 112-121. 

[11] O. J. Bonello, “A New Criterion for the Distribution of 
Normal Room Modes, “J. Audio. Eng. Soc., vol. 29, 
pp. 597–606 (1981 Sept.); Erratum, ibid., p. 905 (1981 
Dec.). 

[12] R. Walker, “Optimum Dimension Ratios for Small 
Rooms,” presented of the 100th Convention of the 
Audio Engineering Society, J. Audio Eng. Soc. 
(Abstracts), vol. 44, p. 639 (1996 July/Aug.), preprint 
4191. 

[13] R. Walker, “A Controlled-Reflection Listening Room 
for Multichannel Sound,” Proc. Inst. Acoust. (UK),vol. 
20, no. 5, pp. 25–36 (1998). 

[14] EBU R22-1998, “Listening Conditions for the 
Assessment of Sound Programme Material,” Tech. 
Recommendation, European Broadcasting Union 
(1998). 

[15] F. A. Everest, ”The Master Handbook of Acoustics”, 
4th ed., McGraw-Hill, New York, 2001, 

[16] T.Cox, P.D’Antonio, M.R.Avis, “Room Sizing and 
Optimization at Low Frequencies”, J. Audio Eng. Soc., 
Vol. 52, No. 6, 2004 June. 

[17] M.Skålevik, ”Schroeder Frequency Revisited”, Forum 
Acusticum 2011, Aalborg. 

[18] http://akutek.info/demo_files/rehearsal_room.htm 
[19] http://akutek.info/articles_files/stochastics.htm 
[20] http://www.acoustics.salford.ac.uk/res/cox/book/ 

http://akutek.info/demo_files/rehearsal_room.htm�
http://akutek.info/articles_files/stochastics.htm�
http://www.acoustics.salford.ac.uk/res/cox/book/�


 
www.akutek.info 

 

 

 
More open sources in acoustics available on www.akutek.info 

 

akuTEK navigation: 

Home 
Papers 

Title Index 
Voice Acoustics 

Speech Acoustics 

AKUTEK research  
 
 
 

 

 

http://www.akutek.info/
http://akutek.info/index_files/papers.htm
http://www.akutek.info/index_files/title_index.htm
http://www.akutek.info/research_files/voice_acoustics.htm
http://www.akutek.info/research_files/speech_acoustics.htm
http://www.akutek.info/research.htm

	Front page

	Paper first page

	Summary

	Conclusion

	References

	Further work

	AKUTEK navigation

	AKUTEK last page

	PRESENTATION

