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ABSTRACT 
Reflector arrays have two independent low frequency limits. One is due to attenuation of 
wavelengths large compared to the size of the elements in the array, as established by 
Leonard, Delsasso, Knudsen (1964). The other is due to attenuation from diffraction, as 
established by Rindel (1991). In the latter case, the whole array is small compared to the 
Fresnel-Zone needed to transmit low frequency sound. These two attenuation effects may be 
described as two serial high pass filters in the transmission path via the reflector array. The 
arrays used as orchestra canopies are often so large that there is no practical low frequency 
attenuation due to array size. However, the size of the elements may be critical, since smaller 
elements improve the high frequency response while low frequency response suffer and vice 
versa. There are also many practical and architectural concerns when designing a reflector 
array, making the size and shape of elements an important acoustical issue. Some shapes are 
hard to decide whether they are large or small compared to the wavelength. This author has 
suggested the panel edge density as a geometrical predictor of the low frequency limit of an 
array. Theory and measurement results are presented. 
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INTRODUCTION 
In concert halls, reflector arrays are often used to add sound reflections of proper delay and 
strength to listeners on stage or in the auditorium. A famous early reflector array was the 
canopy from late 1950’s in the Tanglewood Shed. It extended from above stage and into the 
audience to control the initial time delay gap – IDTG. From being a means to provide short 
IDTG in the stalls in wide and/or fan-shaped halls, canopies and reflector arrays in particular 
have since the 80’s tended to be more motivated by stage acoustics. Among the advantages of 
forming a canopy from an array of elements, is the large freedom in design and the inherent 
sound transparency often is required for the early-to-late sound balance [1]. This paper deals 
with the low frequency limits of plane panel arrays. Plane panel arrays are studied by this author 
because of theoretical and practical simplicity, and because arrays in many concert halls are 
variants of, or modifications of basically plane arrays.  
 
BASIC THEORY AND PREVIOUS WORK 
Reflector arrays have two independent low frequency limits [2]. One is due to attenuation of 
wavelengths large compared to the size of the elements in the array, as established by 
Leonard, Delsasso, Knudsen (1964) [3]. The other is due to attenuation from diffraction, as 
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established by Rindel (1991) [4]. These two attenuation effects may be described by two serial 
high pass filters in the transmission path via the reflector array (Figure 1).  
 
We shall refer to the two filtersi as 1) the Reflection Filter and 2) the Fresnel-Kirchhoff filterii 
(hereafter the FK-filter), respectively. The two filters combine in series as follows: The Reflection 
Filter describes the ability of a surface to reflect sound pressure, while the FK-filter integrates 
the reflected pressure components at the receiver (Figure 1). 
   
The Reflection Filter 
In the pass band of the ideal Reflection Filter, the frequency response is equal to unity. 
Attenuation occurs below the cut off frequency due to insufficient obstacle size allowing waves 
to be diffracted around the reflector.  
 
The FK-filter 
The pass band level and the cut off frequency of the FK-filter are both expressed by Rindel’s 
formulas [4][5]. The pass band value is 20·log(µ) where the panel density µ=Spanel/Stotal is the 
ratio of the panel area to the total array area. Attenuation below the cut off frequency is due to 
the array becoming small compared to the cross section needed to transmit low frequency 
sound un-attenuated. For rectangular arrays as well as single rectangular elements, the cut off 
frequencies can be calculated from length, width, distance, and incidence angle by Rindel’s F1 
and F2. 
For conceptual purpose we introduce the Critical Zone (CZ), which is similar to the first Fresnel-
Zone (FZ), only smaller in cross section, so that SFZ = π·SCZ. An ideal reflector just filling the CZ 
reflects sound with the same magnitude as a reflector of infinite size. We then may define the 
apparent panel density µ’=Sp’/SCZ, where Sp’ is the panel area inside the CZ.  The level 
expression 20·log(µ’) is valid also below the cut off frequency of the FK-filter. 
The high limit of the useful frequency range corresponds to a CZ so small that it can be 
contained by a reflector element (Figure 5). Above the limit, there are strong fluctuations in 
reflection levels, as the CZ falls on or between elements as source-receiver positions changes. 
For rectangular elements, the limit is equal to the highest of F1 and F2. 
 

   

  

 

Passing f > fc Passing from critical zone Passing f>fc from critical zone 
 

Figure 1. Serial combination of two filters 
 

The Reflection Filter cut off frequency 
For normal incidence on a simple circular disc of radius a, the cut-off frequency of the Reflection 
Filter can be deduced from scattering theory [6] by identifying the limit where scattered pressure 

                                                 
i In this context, filter is synonymous to transfer function 
ii Denotation due to the Fresnel-Kirchhoff (FK) approximation theory applied.  
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approaches the pressure calculated by FK-theory. This occurs when ka=3π/4, corresponding to 
a cut off frequency of approximately Fc�128/a. 
Some shapes are hard to decide whether they are large or small compared to the wavelength, 
and their cut off frequencies is not straightforward to determine.  This author has suggested the 
panel edge density as a geometrical predictor of the cut off frequency due to element size and 
shape, based on theory and measurements [2],[7]. Scale model arrays of varying geometries 
showed the trend Fc= 68* ε, where ε=L/S is the edge density when S is the surface area of 
panels with total edge length L (Figure 2). The size of ε is m-1. In the above case of the disc of 
radius a, the edge density is ε=2/a, implying Fc�64·ε (corrected since Copenhagen [2]). This 
closeness between theory and measured trend supports the possible validity of ε-predictor. 
 

 
 

a. Edge density ε b. Scale models measured c. Measurement trend Fc = 68·ε 
Figure 2. The edge-density predictor for the Reflection Filter cut off frequency 

 
The equivalent reflector radius appears to be a convenient measure of non-circular elements, 
and is here defined as Rr=2/ε =2·S/L, since the edge density of a circular disc is 2/r, having 
P=2πr and S=πr2. In the case of an A*B rectangle, the equivalent reflector radius approaches B 
when A>>B. In terms of equivalent reflector radius, the scale model measurement trend could 
be expressed as Fc=136/Rr, which is close to the 128/a deduced from circular disc scattering. 
 
CURRENT INVESTIGATIONS [8] ON REFLECTION FILTER CUT OFF FREQUENCY 
The trend of Fc= 68·ε was found from measurements on rectangular shapes and normal 
incidence. More scale model measurements have been carried out to test if the Reflection Filter 
cut off frequency can be predicted from edge density for many different element shapes and for 
varying incidence angles. Two student projects at NTNU, Trondheim, Norway, supervised by 
this author, have investigated this. Both projects identified the Reflection Filter effect.  
 
Dependency on geometry at normal incidence 
Bråthen [9] measured on scale model arrays of 40 different geometrical patterns, and concluded 
that the low cut off frequency could be predicted by F = 0.196·c·εp ± 10.8%, equivalent to 67·εp ± 
10.8%, i.e. the interval 59·εp to  74·εp. 
 
Dependency on angle of incidence  
Thorød [10] measured 6 positions at 4 different incidence angles on 3 different scale model 
arrays, and observed a tendency towards rising low cut frequency limit as incidence angle 
increased through 15, 30, 45 and 60 degrees, with 0 degrees equal to normal incidence. This 
author has analyzed the measurement data in further detail, with the following conclusions: 1) 
The (Pearson) correlation between frequency responses and best fit high pass filters is on 
average 80% for the 72 measurements; 2) The variation in the set of cut off frequencies from 
the 72 high pass filters correlates 61% with variation in incidence angles, Figure 3. 

L=L1+L2 

L 

L1 L2 
S 

ε = L/S 
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Figure 3. High pass filter cut off frequencies Fc plotted against incidence angles (left), and 
against projected element density 1/cosθ , re 1 at normal incidence. 
 
In terms of explanation degree: 1) The correlation values indicate that measured frequency 
responses can not be fully explained by ideal Reflection Filters; 2) Less than 63% of the 
variation in Fc’s is due to variation in reflection angle. From this it is deduced that the angle-
related variation in frequency response can not be explained by angle dependency in the 
reflection filters alone. Considerable explanation is found in angle dependent FK-filters, e.g. 
interference and effects from geometrical array-patterns. Spectral peaks and dips moving 
upwards in frequency as angle increases are to be expected, as illustrated in Figure 4c, and in 
Appendix, Figure 7. Therefore, the hypothesis that the ideal reflection filter is independent of 
incidence of angle could not be rejected by this test. 
 

-21
-18
-15
-12
-9
-6
-3
0
3
6

50
0

10
00

20
00

40
00

80
00

16
00

0

15 deg
30 deg
45 deg
Fc=66*e

 

 

-21
-18
-15
-12
-9
-6
-3
0
3
6

50
0

80
0

12
50

20
00

31
50

50
00

80
00

12
50

0

20
00

0

15 deg
30 deg
45 deg

 

-12
-6
0
6

12
18
24

1000 10000

A15
A30
A45

 

 

   
a. Scale model measurement, 

µ=70%, ε=37 m-1 

 

b. Scale model measurement, 
µ=51%, ε=41 m-1 

 

c. Calculated edge diffraction, 
µ=30%, ε=39 m-1 

Figure 4. (a) Measured and computed frequency responses at varying angles of incidence. All 
diagrams are dB vs Hz. 0dB corresponds to 100% dense reflector in (a) and (b), and to the first 
arrival component in (c), see also Figure 7 in Appendix.  
 
Geometrical dependant deviations in Reflection Filter frequency response 
The results is a reminder of the importance of choosing adequate array patterns to suppress 
peaks and dips in the FK-filter for two reasons: Primarily to provide good sound quality for the 
receiver, secondly to make it easier for the researcher to detect the cut off frequencies.  
 
DESIGN ISSUES  
There are many acoustical, practical and architectural concerns when designing a reflector 
array [1]. Many issues are about optimization or trade-offs. Frequency range, array size, 
element size and shape, surface density, array height, and array pattern are strongly 
interdependent, and one of them can not be chosen without considering the others. 
 
Frequency range 
What range of frequency response from a reflector do listeners require? This question is not to 
be answered in this paper, but we assume that the answer will differ from musicians to 
audience, and that the frequency response in the range of 500Hz to 4 kHz is important [14] in 
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stage acoustics due to the acoustic barriers inherent in a symphony orchestra being significant 
for frequencies > 500Hz. In this range, the spectrum should be flat (±3dB), and vary little from 
place to place. 
 
Element size and shape 
The size of the elements may be critical, since smaller elements improve the high frequency 
response while low frequency response suffer and vice versa. Rindel concluded that smaller 
elements are to be recommended for high frequency quality. However, we must keep in mind 
that small elements give poor low frequency response. For this reason one can not solve the 
low frequency issue without taking high frequency response into account. This requires precise 
knowledge about required frequency range, and how to achieve it through design.  
 
Example: Applying Fc=64·ε  as low limit and the Critical Zone criterion (Figure 5) for high limit of 
a 50% density array at 6m level above source-receiver, for 0.6*0.6m2 square elements leads to 
the useful frequency range 0.4kHz to 2.8kHz. High limit can be calculated by Rindel’s F1 and F2. 
 

  
F=0.4-2.0kHz, µ’� µ =50%, -6dB reflection F=2.8kHz, µ’=100%, 0dB reflection. High limit. 

 
Figure 5. Useful frequency range depends on element size and shape related to Critical Zone 

 
Comment: While 0.4kHz low limit is assumed OK for stage acoustics, 2.8kHz high limit is 
assumed too low. Reducing element size to 0.5*0.5m2 results in frequency range 0.5kHz to 
4kHz, which may just be OK. This illustrates the problem of the inherent narrow frequency 
range of flat panel arrays. The high frequency range may be extended by applying curvature or 
surface diffusion to the panels, or by more adequate panel shapes. Ando [11] suggested that 
smoothness in frequency response could depend on element shape. Another approach is the 
two-way FK-filter system consisting of a narrow panel array with large panel array behind 
(above), like in the stage canopy in Oslo Concert Hall.  
 
Array density 
Panel density of the array affects the acoustic transparency and the early-to-late balance in the 
reflected sound energy, the strength of the reflections, as well as the air circulation in a concert 
hall. Air gaps of 0.6-0.8m are often required for lighting trusses. Size and geometrical pattern of 
the elements and the size of the array affect both coverage and quality of the reflected sound, 
and of course the architectural concept. 
  
Array size 
In practice, the arrays used as orchestra canopies are often so large that there is no low 
frequency attenuation due to array size, i.e. the FK-filter works in its band pass region. The 
array must not be too large, since this may separate sources and listeners from the reverberant 
space, especially if the array is dense and at low position. 
 
Array height 
The height position (source and receiver distance to the array) affects the FK-filter: The lower 
the array position is, the narrower can the bandwidth of even frequency response be, and vice 
versa. At higher positions, the Critical Zone will contain a larger amount of elements and air 
gaps, providing more even reflections at higher frequencies. On the other hand, too high array 
position may result in to much attenuation and delay. 
 
Periodic effects, coloration and diffusivity 
Array patterns with periodic edges can produce unwanted interference resulting in peaks and 
dips in the frequency response, or audible periodic pitch effects. To suppress coloration [12], 

http://en.wikipedia.org/wiki/Oslo_Concert_Hall
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and to provide even reflector coverage, the array should be diffusive [1]. The significance of 
diffusivity has been previously discussed [13]. 
 
Prediction models and calculation tools 
There is a need to assist design by calculations. A brief discussion with some measurement 
results are presented in Appendix.  
 
FURTHER WORK  
An extended measurement program is planned with the aim to find array configurations with a 
frequency response with less than ±3dB deviation from an ideal 1. order high pass filter. The ε-
predictor will be further tested for validity. Both angle dependency and shape dependency will 
be tested in further measurements on more ideal arrays. 
 
CONCLUSIONS 
The frequency response of a reflector array can be described by two serial filters – the 
Reflection Filter and the FK-filter. The useful frequency range of the array is in the pass bands 
of these filters. There are two low frequency limits, one for each filter. The FK-filter low limit is 
given by Rindel. Prediction of the Reflection Filter cut off frequency Fc is crucial in array design 
because of inherently narrow frequency range. It can be deduced from theory, and the panel 
edge density ε has been suggested as a predictor: Fc = C·ε. Theory and measurements indicate 
C in the region of 64-68, and for design purposes the theoretical value of 64 is suggested. The 
dependency of incidence angle, element shape, and evenness vs fluctuations in frequency 
response is to be investigated further. In array design, several interrelated issues must be taken 
into account. 
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APPENDIX 
 
Prediction models and calculation tools 
There is a need to assist design by calculations. If we define the useful frequency region of the 
array to be above the cut off of the Reflection Filter, then FK-approximation is valid in the useful 
range. However, this requires that the cut off frequency is predicted by other methods than FK, 
e.g. a geometrical predictor like the edge-density predictor f >C·ε suggested by this author. BEM 
merge Reflection Filter and FK-filter into one. In the Helmholtz-Kirchhoff integral, geometry and 
source-receiver position are the FK-parameters, while the Reflection Filter parameters and 
simplifications are given in the table below. 
 
 Reflection Filter parameters in H-K integral Usual simplification 
1 Pressure on the reflectors Approximately twice the pressure of the 

incident wave 
2 Pressure in the air gaps (apertures) Unaffected by the presence of the array 

(free-field value) 
3 Pressure-gradients on reflectors Equal to zero on a rigid reflector surface  
4 Pressure-gradients in the air gaps  

 
Assumed unaffected by the proximity of the 
array (free-field value) 

 
Simplifications 1) and 4) are bold assumptions, since the pressure reflection coefficient is 
weaker than unity, and because the reflectors introduce pressure gradients in the air gaps. 
Figure 6 shows measurements that illustrates the frequency dependency of the Reflection Filter 
parameters. Below the Reflection Filter cut off, 1) and 4) are complicated because  
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a. p re free field 
64·ε =3.1kHz 

b. p re free field 
64·ε =3.1kHz 

c. ∇p re free field 
64·ε =3.1kHz 

d. ∇p re free field 
64·ε =1.2kHz / 11kHz 

Figure 6: Pressure p and pressure gradients ∇p measured on array surface, w normal 
incidence; (a),(b) and (c) 4 panels 7*10cm2 ; (d) 1 (solid) and 35 (dotted) apertures 3*3cm2 each 
in 21*30cm2 panel. All diagrams are dB vs Hz; 0dB ref = measured free field values.  
 
Appendix to Figure 4c 
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Figure 7. Complex sum of diffraction components from 12 panel edges in Figure 4c. 0dB=single 
edge. 
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