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1 INTRODUCTION  

An array of panels forming a canopy over the stage in a concert hall is commonly used to provide 
sound reflections for improved foldback to the orchestra. By choosing proper dimensions of the 
panels and degree of opening area in between, one may easily adjust the balance between the 
foldback intensity and the fraction of energy transmitted through to the hall. In addition to the 
numerous acoustical concerns associated with the design of the system, there is often need to 
provide for lighting and allowance for air circulation in the hall, and to consider aesthetical concerns. 
 
This paper will concentrate on the problem of sound transparency of plane arrays consisting of 
elements and openings that are small compared to the wave-length. Even if foldback at very low 
frequencies may be of little importance in some cases, it is critical to know the lower limit for the 
useful frequency range. There could be many reasons for looking in to small panel design which 
may introduce an unwanted high pass filter with too high cut off frequency into the transfer function. 
 
Measurements on scale-models of varying reflector arrays have been carried out in order to study 
the behavior of the size dependant transfer function, and in particular to identify the cut off 
frequency. Results together with theoretical discussions are presented in this paper. 
 
Intuitively, the term transparency is associated with holes, apertures, openings of various shapes. In 
this paper the panel arrays will in many ways be treated as large, perforated panels. 
 
The investigations reported in this paper are largely motivated by preparing the design of the new 
over stage canopy in Oslo Concert Hall in 2004, for which this author was the acoustic consultant. 
In this case, being able to predict the low-cut frequency was very important. 
 
2 SOME PREVIOUS INVESTIGATIONS 

Rindel1 (1991) has presented some design principles to reflector arrays for improved ensemble in a 
concert hall, and discussed the useful frequency ranges in a parameter study that included the 
effects of varying the size of the panels, the total size of the array, and the panel density. 
Predictions of frequency response arrays of panels with dimensions 0.9*0.9m2 and 1.8*1.8m2 
based on the Fresnel-Kirchhoff Diffraction Integral (in the following referred to as FK) were carried 
out for the range down to 100Hz. Rindel’s principles were very designer friendly in their elegant 
simplicity.  
 
From the results one could conclude that many small elements should be preferred to fewer large 
ones, since the FK predicted that larger elements would give uneven foldback to the receiving area 
for frequencies higher than a limit F1 depending on element size and its distance from source and 
receiver. Further, Rindel reported that the FK would predict a low frequency limit Fg dependant on 
the group (array) size and its distance from source and receiver. In the recommended range 
between F1 and Fg, the frequency response depends on the panel area density µ as 20*lg(µ). Low 
frequency dependence on element size was not discussed. The limitations of the FK will be 
discussed below. 
 
Ando2 (1998) presented calculations on arrays consisting of 35 panels, 4 m2 each, but different 
shapes in 3 different arrays – triangular, square and circular. From the results, Ando concluded that 
the triangular elements resulted in less dips in the transfer function than the two other arrays. The 
results corresponded well with Rindel’s estimations between Fg and F1 , while above F1 they 
corresponded with Ando’s calculations only when there was a panel in the geometrical reflection 
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path. This is good news for the designer, because it shows that the useful frequency range could 
extend well above the F1 limit that otherwise would mean constraints regarding element size.   
 
He further presented measurement results from the large canopy of the Tanglewood Music Shed 
that confirms that the frequency response is maintained all the way down to 20Hz for this array with 
its close to 8m wide triangular elements. 
 
Incidentally, all the above investigations involve element sizes and frequency ranges above the 
bass-leak limit. 
 
Torres3 (2000) emphasized the significance of edge diffraction to the reflections from panel arrays. 
From his scale-model measurement results, he states that smaller panels greatly reduce low-
frequency reflection, perhaps even more than intuition might predict. In historical view it is worth 
mentioning the interest for canopy arrays concentrated in the period of 1961-1965 with the case 
studies by Johnson et al.4, Meyer and Kutruff5, and Beranek6, obviously motivated by the current 
interest in the designs of the New York Philharmonic Hall and the Tanglewood Music Shed. One of 
the earliest systematic studies on reflector arrays was presented by Leonard et al.7 (1964). 
 
Among other contemporary authors who currently are investigating reflector arrays are Cox and 
D’Antonio, who are announced to give a paper on canopy arrays at the IOA Copenhagen 
Conference 2006. 
 
3 THEORY 

This section intends to present the conceptual basis for this paper.  
 
3.1 Definitions and abbreviations 

For the purpose of this paper the following definitions and abbreviations will be used: 
• FK the Fresnel-Kirchhoff Diffraction Integral 
• FZ 1. Fresnel zone, air-volume in ellipsoid of revolution around the sound ray, defining 

a channel for un-attenuated transmission between given source and receiver 
located in each focal point, depending on the wavelength of interest 

• S’ cross-section inside FZ, i.e. an air-gap or  a reflective surface providing ray-path 
connection between source and receiver, and that may be an integral of separate 
fragmented dS’, by diffraction principles, e.g. a reflector array 

• S0
’ critical size of S’, i.e. an S’ that is just large enough not to attenuate a sound ray 

• ε edge density of a cross section, ε = �/S, where � is length of the edge surrounding 
the actual cross-section area S 

• σ perforation degree, i.e. the total air-gap area divided by the total array area 
• µ surface density, i.e. the total panel area divided by the total array area,  µ =1-σ 
• k wave number, defined by k = 2π/λ = 2π�f/c 

 
3.2 Sound ray transmission 

Given a source and a receiver connected by a ray-path via a cross-section S’, the transfer function 
for ray-transmission depends in general on the cross-sectional density S’/S0’ within FZ. This effect 
may be calculated from Rindel (19868 and 1991) in the reflection case. 
 
However, the transfer functions for both reflection and transmission does also depend on the size of 
the wave number k compared to some critical value k0 determined by the geometry of S’. This paper 
will present a possible expression for these low frequency limits related to edge density.  
  
To illustrate how ray attenuation depends on both wave number and the FZ, four categories that 
apply to the reflection case are given in the matrix below, and illustrated in Figure 1. Cut-off due to 
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finite array size (f<Fg) is not treated as a separate case, since it may be considered as attenuation 
due to reduced surface density S’/S0’ inside FZ like in II and IV. Among other significant matters that 
are outside the scope of this paper is scattering from an array, level changes due to curved 
surfaces (S’/S0’>0), and typical high frequency problems such as the case of “no geometrical 
condition” (S’/S0’=0). 
 
 Conditions for ray-transmission Attenuation 
I Specular reflections 0dB 
II Ray attenuation due to cross-sectional density inside FZ ∆LFZ  = 20�lg(S’/S0’) 
III Ray attenuation due to wave number smaller than critical value k<k0  ∆Lk = 20�lg(k/k0) 
IV Ray attenuation due to both wave number and density inside FZ ∆LFZ +  ∆Lk 
 
 

 
Figure 1: Illustration of the four categories in case of reflection based on relationship between cross-
section (colored rectangles), FZ (dotted ellipse), and wave number k: I and III are practically single 
element reflection cases, treated in literature as specular reflection and scattering, respectively; II is 
a typical 20�log(µ) bandpass case, well predicted by FK; IV is attenuated due to both FZ and the 
wave number, only partly predicted by FK. The rays in II and IV apparently re-integrates from 
fragmented cross-sections. Note: S’=S0’ is valid even if S>S0’, following the definitions of S’ and S0’. 
 
 
3.3 Cross-sections small compared to a wavelength 

3.3.1 Single elements 

Sound propagation via air-gaps and surfaces that are small compared to a wavelength has been 
treated in the literature, as early as 1897 by Rayleigh9 and 1944 by Bethe10. Since then it has been 
noted by several authors that FK is not valid for predicting such propagation. The reason is that FK 
is based on the condition that the sound field at the surface of interest is free-field-like with field 
operator ∇=jk, i.e. out of phase with the sound pressure and having the size of the wave number k. 

k  < k0 
 

k > k 0 

S’< S0’ 

S’= S0’ 
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II 

III 
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1 S’/S0’ 
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Though this is a good approximation in many practical cases, it is not likely to be valid close to 
edges, where one must expect the sound pressure to be associated with gradients due to field 
divergence. It is therefore more likely to expect ∇ to be real and proportional to the edge-density ε 
of the cross-section. 
  
From the results in the textbook by Pierce 11  (1981), see 5.3 below, we deduce that FK will 
underestimate ray-transmission through a circular aperture of radius a whenever ka<4/π and 
overestimate ray-reflections from a circular disc of radius a whenever ka< 3π/4, both with a 6dB per 
octave tendency. From these observations it is evident that in order to predict low-frequency 
reflection and transmission, on must establish a separate transfer function   
 
Expressed in terms of edge density and wave number, the low-frequency regions are 

 
k < ε�2/π  for an aperture 
 
k < ε�3π/8 for a disc 

 
This author has looked into the possibility of these expressions being useful approximations for the 
low-frequency limit of air-gaps and panels general. It seems important to find a general expression 
for the low-frequency limit for several reasons: 
 

• It has significance in array design 
• Given a 6dB per octave behavior below the frequency limit of a reflector array, there will be 

an abrupt transition between the reflecting mode and the transmission mode. 
• A cut-off frequency based on simple geometrical properties, combined with proper 6dB per 

octave filters, could be implemented in ray-acoustical calculation tools to take attenuation 
due to sub-wavelength dimensions into account 

 
The effects of cross-sections of sub-wavelength dimensions are in the literature often referred to as 
diffraction and scattering, the latter also having particular significance in radar technology. 
 
3.3.2 From single element to an array 

One can not in general expect that the sound pressure component from one single element will be 
equal to the sound pressure component from the same element as a member in an array. Some 
interaction between elements of the array must be expected, so to compute the transfer function of 
an array may not quite straightforward. Though the dipole behavior prevents one element to impose 
sound pressure on the rest of the array, one element will indeed impose significant pressure 
gradients on its neighbours.  
It still seems reasonable to expect that an array of elements will show the same 6dB per octave 
tendencies as for the single elements. For plane waves incident to a non-absorbing infinite array we 
expect a sound pressure reflection coefficient R=1-T when the sound pressure transmission 
coefficient is T. This seems a good approximation whenever S0’ is within the array, and reduces the 
problem to establishing the low-frequency limit. 

We shall now investigate the low-frequency limit in the transmission case, considering a plane wave 
of sound pressure pi normally incident on an infinite, rigid screen, evenly perforated by circular 
apertures with radius a and with pressure components pa(r) from each hole transmitted at distance r 
on the receiving side of the screen, see Figure 2. The perforation degree is σ. At a proper distance 
r, and with wavelength λ, the resulting pressure from n apertures within S0’ must be pt = n �pa(r). 

Since plane waves have source distance approaching infinity we must have S0’ =λ�r, and from 
Pierce we have the pressure components per hole pa(r) = pi �2a/(π ·r).The number of apertures 
inside S0’ is determined from σ = n �πa2/S0’,, and by combining these equations we find that the 
sound pressure due to apertures inside the S0’ must be 
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  pS0’ = pi �4σ /(ka) 

In the appendix, it is shown that the sound pressure component from the S0’ alone is equal to the 
sound pressure from the whole plane (in practice no screen), we find 

   pt = pi  

and the sound pressure transmission coefficient  

T = σ · 4 /(π ka)  

In terms of the aperture edge density εa   

the limit for T= σ  is kσ = 2 εa /π    fσ = 0.10· εa 

while the limit for T = 1 is kT = 2σ· εa /π   fΤ = 0.10· σ · εa 

  

We see that the transmitted sound pressure is independent of the receiving distance r, which 
means that the transmitted sound reintegrates to a plane wave. Since T increases as ka gets 
smaller, T must approach its upper limit at unity as ka approaches σ ·4/π, and its lower level σ as ka 
approaches 4/π. 

 
Figure 2: Model for calculating sound transmission through single aperture (left) and through an 
array of apertures with perforation degree σ, in both cases with plane wave incident on an infinite, 
hard, rigid screen, and aperture radius a. S0’ is contained inside the dotted circle. 
 
A similar deduction can be performed on basis of scattered sound pressure from a single disc, 
according to Pierce (1981), but assuming r>> λ to avoid cosθ dependence from the disks: 
 
 pr  = pi  �µ �ka·4/(3π) 
 
The reflection coefficient is  
 

R= µ �ka·4/(3π) 
 
As from the aperture array we see that the sound pressure scattered from the array of disks is 
independent of the receiving distance. Since R must approach µ asymptotically as ka approaches 
3π/4, we have the cut-off limit for the high pass reflection transfer function R. The cut off limit for 
reflection, expressed by panel edge density εp, wave number, cut-off frequency and speed of sound: 
 
 k0,R = 3π/8�εp   f0,R � 0.19� εp �c 
 

pa 
a 

pS.’ 

pi 
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The transfer function T for transmission through the array has a characteristic transition band 
between the low pass region, and the semi-transparent region, expressed by air-gap edge density 
εa, wave number, cut-off frequency and speed of sound 
  

kT,trans = from  σ ·2 εa /π   to    2 εa /π  fT, trans � from 0.10·σ�ε a�c  to  0.10�ε a�c 
    
 
3.3.3 Inductance of an array 

Cross-sections of sub-wavelength dimensions whether single elements or arrays, are associated 
with apparent lumped air masses, inertance, curved wave fronts, high pressure gradients along 
diverging field lines, dipole radiation, reactive effects, accumulator of kinetic energy, induction in 
analogy to the electric coil. Since ∇p=0 on a rigid panel, it is a perfect gradient reflector. Reflected 
pressure gradients opposing the incident gradients on the panels will travel sideways, providing 
delayed response components due to detour paths in the array plane. In addition to the typical low-
frequency transparency behavior, it makes the array response significantly more diffuse at high 
frequencies than would be expected from the visual image.   
 
3.3.4 Discussion on edge density 

It has been shown above that the frequency limits in transfer functions does relate to edge densities 
in the special cases of arrays with circular panels and circular air gaps. This author is currently 
investigating the possible generality of this relationship in theory and measurements (see below).     
 
3.3.5 Conclusion on sub-wavelength conditions 

FK is not valid for estimating ray transmission via cross-sections that are small compared to a 
wavelength, and the low-frequency limit depends on geometrical properties. The low-frequency limit 
of an air gap is in general not equal to that of a panel of the same shape and size. Below this limit 
the transfer functions have 6dB per octave behaviour, with typical high pass characteristics in the 
reflection case and typical low pass / shelving filter characteristics in the transmission case. To 
convenience for computations and for the designer of reflector arrays – FK seems to be valid in the 
useful frequency range, i.e. in the pass-band of the transfer function for the reflection case. 
 

 
Figure 3 Transfer functions of reflector array as function of the wave number k related to the edge 
density: Basic principles of the expected behaviour due to element size related to wavelengths. The 
critical frequencies are determined by small geometry properties. Typical filter characteristics are 
high pass in the reflective case (left), and low pass / shelving in the transmission case. Density 
relationship is µ = 1 – σ. 
 
The basic principles of the expected transfer functions due to sub-wavelength elements in a 
reflector array are shown in Figure 3 in terms of wave number and edge densities. In Figure 4 we 
see the same transfer functions with frequency axis. FK predictions are indicated by dotted lines.  

log k 

LR (reflection level Re specular reflection) 

20�logµ 

LT (transmission level Re free field) 

2/π• εa σ�2/π• ε

0dB 0dB 

3π/8· εp  
log k 

FK 

FK 

20�logσ 
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Studying the diagrams in Figure 3, considering the case of an infinite, flat panel array with the 
densities µ = σ = 0.5, we have εp=εa, keeping in mind the relationship R=1-T and the expectations of 
a common frequency limit for both reflection and transmission, our theoretical deduction leaves us 
with two candidates, namely k0 =1.18� ε and k0 = ε.  
 
Example: A flat panel array of 1m*1m elements and density µ�= 50% has panel edge density εp = 
4m-1 and predicted to have -6dB high pass reflection level with cut-off close to f0 =160 or 200Hz. 
 

 
Figure 4: Transfer functions of reflector array; Frequency limits relate to the panel edge density εp 
and air-gap density εa. Surface density relationship is µ = 1 – σ. 
 
4 MEASUREMENTS 

4.1 Measurement description 

 
The aim of the measurements was to investigate the frequency response of reflector arrays, and 
search for possible significant geometrical parameters.  
 
Scale model measurements of reflection from 6 reflector systems (arrays) with combinations of 
reflecting surfaces and air gaps, with varying shape, edge densities and surface densities, see 
Figure 5. The reflecting panels had surface weight 220 g/m2 and calculated transmission loss with 
normal incidence >10dB for f > 1kHz, and had negligible thickness related to area. The total array 
size was 21cm*30cm, and distances from array to source and receiver were both 25cm. Source to 
receiver distance was 6cm. 
 
The models may look more like air-gap arrays than panel arrays. This was a practical way of 
providing well-defined edge densities, avoiding the influence from suspension devices, and does 
not influence the validity of the results of interest in this report, since densities σ and µ does not 
depend on shape. 
 
Reflected sound pressure was measured and analyzed with winMLS, the frequency responses 
were related to the 100% density panel (µ = 1), and matched with ideal high pass filter with cut-off 
frequency as parameter. Correlations were computed to evaluate matching. Correlation between 
resulting cut-off frequencies and edge densities and other geometrical properties were calculated 
for evaluation. All results are presented with their true, un-scaled frequencies. In the 50 to 1 scaling 
examples, the surface weight corresponds to 11kg/m2. 
 
In order to avoid confusion with cut-off behavior due to finite array size (which is well predicted by 
FK), all measurements are with the FZ inside the array, and 0dB in all frequency responses is 
related to the measurement on the reference (un-perforated) object. The frequency range of interest 

Frecuency (Hz) 

LR (reflection level Re specular reflection) 

log f 

LT (transmission level Re free field) 

0.10�c�εa�σ 

0dB 0dB 

0.19�c� εp 
Frecuency (Hz) 

0.10�c�εa log f 

FK 

FK 20�logµ 

20�logσ 
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is between Rindels array low-cut Fg and the element limits F1 and F2, where FK wrongly predicts 
constant level. 

 
Figure 5: The 6 semi-open array models, including the 0dB reference (un-perforated) 
 
4.2 Results and conclusion on frequency limit 

Results from measurements on 6 different objects (5 + reference) are presented graphically with 
average and standard deviation below. 
 
High pass filters matched well with measurements. Best match cut-off frequencies in terms of wave 
number correlated 0.99 with panel edge density parameter εp, while only 0.56 with air-gap edge 
densities εa. Best match cut-off average from 5 objects resulted in the wave number limit k=1.23�εp 
and frequency limit f = 0.20�c�εp with standard deviation ±16%. Thus the measured limit is close to 
the limit f=0.19�c�εp predicted from theory in 3.3.5 above. 
 
Awaiting further investigations, f = 0.19�c�εp , or f = 64�εp , is suggested as a rough estimate of the 
cut-off limit. 

0dB REF σ =0% 
21cm*30cm 

35 holes 3cm*3cm σ =50% slits 1cm*9cm σ =40% 15 holes 3cm*3cm σ =22% 

4 holes 7cm*10cm σ =50% 4 panels 7cm*10cm µ =50% 
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Frequency Response Level of a 21cm*30cm reflector with 15 3cm*3cm (22%) 
opening, measured with source and receiver at 25cm and normal incidence. 

0dB refers to 0% opening. Error bars show standard deviation from 6 positions.
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Scale example 50 to 1:  Array 10m*15m with 15 holes of 1.5m*1.5m each, cut-off frequency 78Hz  
 
 

15 holes 3cm*3cm σ =22% 
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Frequency Response Level of a 21cm*30cm reflector with 28 1cm*9cm (40%) 
opening, measured with source and receiver at 25cm and normal incidence. 0dB 

refers to 0% opening. Error bars show standard deviation from 6 positions.
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Scale example 50 to 1:  Array 10m*15m with 28 slits of 0.5m*4.5m each, cut-off frequency 240Hz 

slits 1cm*9cm σ =40% 
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Frequency Response Level of a 21cm*30cm reflector with 35 3cm*3cm (50%) 

opening, measured with source and receiver at 25cm and normal incidence. 0dB 
refers to 0% opening. Error bars show standard deviation from 6 positions.
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Scale example 50 to 1:  Array 10m*15m with 35 holes of 1.5m*1.5m each, cut-off frequency 230Hz 
 

35 holes 3cm*3cm σ =50% 
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Frequency response from 21cm*29cm panel with 4 holes 7cm*10cm each
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Scale example 50 to 1:  Array 10m*15m with 4 holes of 3.5m*5.0m each, cut-off frequency 125Hz 
 

4 holes 7cm*10cm σ =50% 
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Frequency response from 21cm*29cm array with 4 panels 7cm*10cm 
each
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Scale example 50 to 1:  Array 10m*15m with 4 panels of 3.5m*5.0m each, cut-off frequency 47Hz 
 
 
  
 
 
 
 
 
 
 
 
 
 

4 panels 7cm*10cm µ =50% 
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5 APPENDIX 

This section is presenting a fuller treatment of the theoretical basis in this document 
When a sound wave hits an array of panels, some of the sound energy will be reflected back into 
the half-space on the source’ side of the array, while the rest of the energy will either be transmitted 
into the half-space on the opposite side of the source, or be absorbed by the array. The reflected 
energy as well as the transmitted energy will be transferred via the array by combinations of ray-like 
paths and scattering.  
 
5.1 Rays 

Ideal sound rays transmission have some significant features: 
 

• they travel through cross sections larger than the first Fresnel Zone 
• cross sections are large compared to a wavelength 
• plane wave fronts perpendicular to the rays 
• sound pressure gradients by size k�p, where k is the wave number and p is the sound 

pressure 
• non-reactive specific impedance equal to the characteristic impedance of the medium, ρc 
• they can be predicted by FK 

 
Rays may be attenuated along their path by the size of cross sections. 
 
5.1.1 Ideal ray transmission 

Sound energy traveling along straight rays depends on the apparent cross section S’ of the 
surfaces to be reflected by, or the openings to be transmitted through. The ideal cases are the so-
called specular reflections from infinite large and rigid surfaces, and the free-field propagation 
through infinite large openings (in optics often referred to as apertures). In practice such conditions 
are approximated when the ray path is inside sufficiently large apparent cross sections.  
 
The apparent cross section S’ is the cross section “as seen” from source and receiver, and is 
identical to the actual cross section S whenever the ray path is normal to the cross section. If on the 
other the hand there is an angle θ between path and normal, the apparent cross section is equal to  
 

S’=S�cosθ 
 
For un-attenuated sound transmission the rays must, all along the path from source to receiver, run 
through apparent cross sections that are large enough to contain the first Fresnel-Zone, which later 
will be denoted FZ. More details about the FZ are given in 5.2 below. 
 
The critical minimum size of an apparent cross section for un-attenuated sound transmission can be 
expressed by 
 

S’>S0’  where S0’ = λ /(1/s+1/r) 
 

where s and r denote the distances along the ray-path from S’ to the source and receiver 
respectively. Readers may find this to correspond with Rindel’s frequency limit, above which the 
sound transmission is un-attenuated by the size of S’. 
 
5.1.2 Ray attenuation due to cross-section smaller than the Fresnel Zone  

The general principle for attenuation due to cross-sections S’ < S0’  
 

∆L=20�log(S’/S0’) 
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where S’ is the total apparent cross-section inside the FZ, and S0’ the reference apparent cross-
section for FZ-related attenuation. For the actual computation, simple formulas are given by Rindel. 
 
5.2 The first Fresnel zone - FZ 

The reference apparent cross-section for FZ-related attenuation is introduced by notation S0’ and for 
the purpose of this document defined as follows: Inside an infinite reflecting plane there is, for a 
given source and receiver, an apparent cross section that is such that if the surface outside the 
cross section was removed, the strength of the reflection would be unchanged. This is the reference 
apparent cross section .   
The size of the S0’ varies with distance from both source and receiver such that all sub-sequent S0’s 
are contained by an ellipsoid with source and receiver in each focal point. In the case of a reflection, 
one of the focal points will be the image source. The void inside the ellipsoid provides for un-
attenuated ray-like transmission along its axis of rotational symmetry. The width or apparent radius 
of this ellipsoid depends on the wavelength of the sound to be transmitted. Applying common 
textbook geometry notation, given a source to receiver distance d=2�c, the ellipsoid is 2�a long and 
2�b wide mid-way between source and receiver, such that b2=a2-c2 and such that k(2a-2c)=1, 
implying b2=1/(2k)�(2c+1/(2k)). Since in most practical cases 2c>>1/(2k), we can express the criteria 
for the width of the ellipsoid surrounding a ray of un-attenuated ray-like transmission by the 
approximation 
 
 b2 � d/(2k) 
 
Here, b is the apparent radius of S0’ mid-way between a source and a receiver that are distance d 
apart. By the properties of an ellipsoid the apparent radius y of S0’ can be determined for any 
distance x from the mid-way position along the ray-path between source and receiver. In most 
cases we have kd>>1, allowing the approximation a�c, and 
 
 y2 � b2

�(1 - x2/c2) 
 
which in terms of x, d and λ can be expressed by 
 
 y2 � d�(1 - 4x2/d2)/(2k) 
 
and expressed by the distance s from source to S0’ and the distance r from receiver to S0’, both 
taken along the ray-path, as 
 
 πy2 � λ�s�r/(s+r)     
 
Resulting in the size (in m2) of the reference apparent cross section 
 

S0’ � λ�s�r/(s+r)    for k(s+r)>>1 
 
For an angle θ between ray and the S0’ plane in question, the actual shape of the S0’ will not be 
circular, but elliptical with the longer axis A so that y = A�cosθ. 
 
For a circular disc with the area of S at normal incidence for given s and r, the critical wavelength is  
  
 λ = S·(1/s+1/r) 
 
which corresponds to the critical frequency of the diffraction filter 
 
 Fc = c/((1/s+1/r)·S) 
 
The expression gives the same result as Rindel’s formulas for the critical frequency for a square 
panel of area S=A·B  
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Readers should keep in mind that, while the S0’ is related to the more commonly used Fresnel 
Zone, but the latter is bigger, resulting in twice the pressure compared to S0’.  
 
5.3 Formulas for circular sub-wavelength geometry 

Both results are from Pierce (1981):  Transmitted sound pressure through a circular aperture of 
radius a in an infinite, rigid, hard screen, from incident plan wave with sound pressure pi  
 
 pa = pi � 2a/(πr) 
 
Scattered sound pressure in direction θ from plane wave with sound pressure pi normally incident 
on a circular, infinitely thin, rigid, hard disk of radius a, 
 

psc = pi � (ka)2 �2a/(3πr)� cosθ 
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